BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 25474591)

  • 21. SCAR/WAVE and Arp2/3 are crucial for cytoskeletal remodeling at the site of myoblast fusion.
    Richardson BE; Beckett K; Nowak SJ; Baylies MK
    Development; 2007 Dec; 134(24):4357-67. PubMed ID: 18003739
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nap1-mediated actin remodeling is essential for mammalian myoblast fusion.
    Nowak SJ; Nahirney PC; Hadjantonakis AK; Baylies MK
    J Cell Sci; 2009 Sep; 122(Pt 18):3282-93. PubMed ID: 19706686
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arp2/3 branched actin network mediates filopodia-like bundles formation in vitro.
    Ideses Y; Brill-Karniely Y; Haviv L; Ben-Shaul A; Bernheim-Groswasser A
    PLoS One; 2008 Sep; 3(9):e3297. PubMed ID: 18820726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-assembly of filopodia-like structures on supported lipid bilayers.
    Lee K; Gallop JL; Rambani K; Kirschner MW
    Science; 2010 Sep; 329(5997):1341-5. PubMed ID: 20829485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enabled negatively regulates diaphanous-driven actin dynamics in vitro and in vivo.
    Bilancia CG; Winkelman JD; Tsygankov D; Nowotarski SH; Sees JA; Comber K; Evans I; Lakhani V; Wood W; Elston TC; Kovar DR; Peifer M
    Dev Cell; 2014 Feb; 28(4):394-408. PubMed ID: 24576424
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissecting regulatory networks of filopodia formation in a Drosophila growth cone model.
    Gonçalves-Pimentel C; Gombos R; Mihály J; Sánchez-Soriano N; Prokop A
    PLoS One; 2011 Mar; 6(3):e18340. PubMed ID: 21464901
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconstitution of the transition from a lamellipodia- to filopodia-like actin network with purified proteins.
    Suarez C; Winkelman JD; Harker AJ; Ye HJ; McCall PM; Morganthaler AN; Gardel ML; Kovar DR
    Eur J Cell Biol; 2023 Dec; 102(4):151367. PubMed ID: 37890285
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mind bomb 2, a founder myoblast-specific protein, regulates myoblast fusion and muscle stability.
    Carrasco-Rando M; Ruiz-Gómez M
    Development; 2008 Mar; 135(5):849-57. PubMed ID: 18216171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The SCAR and WASp nucleation-promoting factors act sequentially to mediate Drosophila myoblast fusion.
    Gildor B; Massarwa R; Shilo BZ; Schejter ED
    EMBO Rep; 2009 Sep; 10(9):1043-50. PubMed ID: 19644501
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A critical function for the actin cytoskeleton in targeted exocytosis of prefusion vesicles during myoblast fusion.
    Kim S; Shilagardi K; Zhang S; Hong SN; Sens KL; Bo J; Gonzalez GA; Chen EH
    Dev Cell; 2007 Apr; 12(4):571-86. PubMed ID: 17419995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring the roles of diaphanous and enabled activity in shaping the balance between filopodia and lamellipodia.
    Homem CC; Peifer M
    Mol Biol Cell; 2009 Dec; 20(24):5138-55. PubMed ID: 19846663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Abi, Sra1, and Kette control the stability and localization of SCAR/WAVE to regulate the formation of actin-based protrusions.
    Kunda P; Craig G; Dominguez V; Baum B
    Curr Biol; 2003 Oct; 13(21):1867-75. PubMed ID: 14588242
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The F-BAR protein Cip4/Toca-1 antagonizes the formin Diaphanous in membrane stabilization and compartmentalization.
    Yan S; Lv Z; Winterhoff M; Wenzl C; Zobel T; Faix J; Bogdan S; Grosshans J
    J Cell Sci; 2013 Apr; 126(Pt 8):1796-805. PubMed ID: 23424199
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Filopodia and their links with membrane traffic and cell adhesion.
    Gallop JL
    Semin Cell Dev Biol; 2020 Jun; 102():81-89. PubMed ID: 31843255
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Visualizing new dimensions in Drosophila myoblast fusion.
    Richardson B; Beckett K; Baylies M
    Bioessays; 2008 May; 30(5):423-31. PubMed ID: 18404690
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drosophila Swiprosin-1/EFHD2 accumulates at the prefusion complex stage during Drosophila myoblast fusion.
    Hornbruch-Freitag C; Griemert B; Buttgereit D; Renkawitz-Pohl R
    J Cell Sci; 2011 Oct; 124(Pt 19):3266-78. PubMed ID: 21896648
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent advances in imaging embryonic myoblast fusion in Drosophila.
    Haralalka S; Cartwright HN; Abmayr SM
    Methods; 2012 Jan; 56(1):55-62. PubMed ID: 21871963
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DRhoGEF2 and diaphanous regulate contractile force during segmental groove morphogenesis in the Drosophila embryo.
    Mulinari S; Barmchi MP; Häcker U
    Mol Biol Cell; 2008 May; 19(5):1883-92. PubMed ID: 18287521
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterisation of the role of Vrp1 in cell fusion during the development of visceral muscle of Drosophila melanogaster.
    Eriksson T; Varshney G; Aspenström P; Palmer RH
    BMC Dev Biol; 2010 Aug; 10():86. PubMed ID: 20701765
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SNS: Adhesive properties, localization requirements and ectodomain dependence in S2 cells and embryonic myoblasts.
    Galletta BJ; Chakravarti M; Banerjee R; Abmayr SM
    Mech Dev; 2004 Dec; 121(12):1455-68. PubMed ID: 15511638
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.