These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 25474616)

  • 1. Nanoscale ion sequestration to determine the polarity selectivity of ion conductance in carriers and channels.
    Cranfield CG; Bettler T; Cornell B
    Langmuir; 2015; 31(1):292-8. PubMed ID: 25474616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the structure of cholesterol-based tethered bilayer lipid membranes on ionophore activity.
    Kendall JK; Johnson BR; Symonds PH; Imperato G; Bushby RJ; Gwyer JD; van Berkel C; Evans SD; Jeuken LJ
    Chemphyschem; 2010 Jul; 11(10):2191-8. PubMed ID: 20512836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium ion transport by valinomycin across a Hg-supported lipid bilayer.
    Becucci L; Moncelli MR; Naumann R; Guidelli R
    J Am Chem Soc; 2005 Sep; 127(38):13316-23. PubMed ID: 16173764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Relation between gramicidin D and valinomycin-induced conductivity of lipid bilayer and cholesterol levels].
    Hianik T; Bajchi A; Laputkova G; Pavelkova J
    Biofizika; 1987; 32(3):458-61. PubMed ID: 2441765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltammetric study on ion transport across a bilayer lipid membrane in the presence of a hydrophobic ion or an ionophore.
    Shirai O; Yoshida Y; Kihara S
    Anal Bioanal Chem; 2006 Oct; 386(3):494-505. PubMed ID: 16847627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gramicidin conducting dimers in lipid bilayers are stabilized by single-file ionic flux along them.
    Becucci L; Santucci A; Guidelli R
    J Phys Chem B; 2007 Aug; 111(33):9814-20. PubMed ID: 17672492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Streaming potentials in gramicidin channels measured with ion-selective microelectrodes.
    Tripathi S; Hladky SB
    Biophys J; 1998 Jun; 74(6):2912-7. PubMed ID: 9635745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-dependent formation of gramicidin channels in lipid bilayers.
    Sandblom J; Galvanovskis J; Jilderos B
    Biophys J; 2001 Aug; 81(2):827-37. PubMed ID: 11463628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Valinomycin Ionophores Enter and Transport K
    Su Z; Ran X; Leitch JJ; Schwan AL; Faragher R; Lipkowski J
    Langmuir; 2019 Dec; 35(51):16935-16943. PubMed ID: 31742409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane on a chip: a functional tethered lipid bilayer membrane on silicon oxide surfaces.
    Atanasov V; Knorr N; Duran RS; Ingebrandt S; Offenhäusser A; Knoll W; Köper I
    Biophys J; 2005 Sep; 89(3):1780-8. PubMed ID: 16127170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stripping voltammetry of nanomolar potassium and ammonium ions using a valinomycin-doped double-polymer electrode.
    Kabagambe B; Izadyar A; Amemiya S
    Anal Chem; 2012 Sep; 84(18):7979-86. PubMed ID: 22891987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic force microscopy imaging and electrical recording of lipid bilayers supported over microfabricated silicon chip nanopores: lab-on-a-chip system for lipid membranes and ion channels.
    Quist AP; Chand A; Ramachandran S; Daraio C; Jin S; Lal R
    Langmuir; 2007 Jan; 23(3):1375-80. PubMed ID: 17241061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rimantadine effects on the elasticity of bilayer lipid membranes and on ion transport through gramicidin D channels.
    Hianik T; Laputková G; Poláková K
    Gen Physiol Biophys; 1990 Aug; 9(4):391-402. PubMed ID: 1703099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of valence selectivity in biological ion channels.
    Corry B; Chung SH
    Cell Mol Life Sci; 2006 Feb; 63(3):301-15. PubMed ID: 16389453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of valinomycin-mediated bilayer membrane conductance by 4,5,6,7-tetrachloro-2-methylbenzimidazole.
    Kuo KH; Bruner LJ
    J Membr Biol; 1976 May; 26(4):385-403. PubMed ID: 933152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weak nonlinearity of current-voltage characteristics of gramicidin D channels. Experiment, theory and application to the study of transmembrane transmission of information.
    Passechnik VI; Hianik T
    Gen Physiol Biophys; 1998 Mar; 17(1):51-69. PubMed ID: 9675556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical origin of selectivity in ionic channels of biological membranes.
    Laio A; Torre V
    Biophys J; 1999 Jan; 76(1 Pt 1):129-48. PubMed ID: 9876129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of gramicidin A in a lipid bilayer: from structure-function relations to force fields.
    Baştuğ T; Patra SM; Kuyucak S
    Chem Phys Lipids; 2006 Jun; 141(1-2):197-204. PubMed ID: 16600199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A lipid dependence in the formation of twin ion channels.
    Al-Momani L; Reiss P; Koert U
    Biochem Biophys Res Commun; 2005 Mar; 328(1):342-7. PubMed ID: 15670789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.