These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 25474774)

  • 1. Spatial coherence in human tissue: implications for imaging and measurement.
    Pinton G; Trahey G; Dahl J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Dec; 61(12):1976-87. PubMed ID: 25474774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic reciprocity of spatial coherence in ultrasound imaging.
    Bottenus N; Üstüner KF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 May; 62(5):852-61. PubMed ID: 25965679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-lag spatial coherence of backscattered echoes: imaging characteristics.
    Lediju MA; Trahey GE; Byram BC; Dahl JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1377-88. PubMed ID: 21768022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short-lag Spatial Coherence Ultrasound Imaging with Adaptive Synthetic Transmit Aperture Focusing.
    Zhao J; Wang Y; Yu J; Guo W; Zhang S; Aliabadi S
    Ultrason Imaging; 2017 Jul; 39(4):224-239. PubMed ID: 28068874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolution and brightness characteristics of short-lag spatial coherence (SLSC) images.
    Lediju Bell MA; Dahl JJ; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jul; 62(7):1265-76. PubMed ID: 26168173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo application of short-lag spatial coherence and harmonic spatial coherence imaging in fetal ultrasound.
    Kakkad V; Dahl J; Ellestad S; Trahey G
    Ultrason Imaging; 2015 Apr; 37(2):101-16. PubMed ID: 25116292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artifact reduction of ultrasound Nakagami imaging by combining multifocus image reconstruction and the noise-assisted correlation algorithm.
    Tsui PH; Tsai YW
    Ultrason Imaging; 2015 Jan; 37(1):53-69. PubMed ID: 24626567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-empirical bone model for determination of trabecular structure properties from backscattered ultrasound.
    Litniewski J; Nowicki A; Lewin PA
    Ultrasonics; 2009 Jun; 49(6-7):505-13. PubMed ID: 19232659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Converting Coherence to Signal-to-noise Ratio for Enhancement of Adaptive Ultrasound Imaging.
    Hasegawa H; Nagaoka R
    Ultrason Imaging; 2020 Jan; 42(1):27-40. PubMed ID: 31802696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging.
    Dahl JJ; Hyun D; Lediju M; Trahey GE
    Ultrason Imaging; 2011 Apr; 33(2):119-33. PubMed ID: 21710827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm(2)) intensity focused ultrasound beam using phase shift of ultrasound echoes.
    Karwat P; Kujawska T; Lewin PA; Secomski W; Gambin B; Litniewski J
    Ultrasonics; 2016 Feb; 65():211-9. PubMed ID: 26498063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized Plane Wave Imaging for Fast and High-Quality Ultrasound Imaging.
    Jensen J; Stuart MB; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Nov; 63(11):1922-1934. PubMed ID: 27824568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decorrelated compounding of synthetic aperture ultrasound imaging to detect low contrast thermal lesions induced by focused ultrasound.
    Nguyen M; Zhao N; Xu Y; Tavakkoli JJ
    Ultrasonics; 2023 Sep; 134():107098. PubMed ID: 37437400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-lag spatial coherence combined with eigenspace-based minimum variance beamformer for synthetic aperture ultrasound imaging.
    Wang Y; Zheng C; Peng H; Chen X
    Comput Biol Med; 2017 Dec; 91():267-276. PubMed ID: 29102824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Effects of Constitutive Properties and Roughness of a Hard Inclusion in Soft Tissue on B-mode Images.
    Karve PM; Duddu R; Tierney J; Dei K; Hsi R; Byram B
    Ultrason Imaging; 2020 May; 42(3):159-176. PubMed ID: 32362201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust Short-Lag Spatial Coherence Imaging.
    Nair AA; Tran TD; Bell MAL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Mar; 65(3):366-377. PubMed ID: 29505405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial Angular Compounding Technique for H-Scan Ultrasound Imaging.
    Khairalseed M; Xiong F; Kim JW; Mattrey RF; Parker KJ; Hoyt K
    Ultrasound Med Biol; 2018 Jan; 44(1):267-277. PubMed ID: 29031985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harmonic spatial coherence imaging: an ultrasonic imaging method based on backscatter coherence.
    Dahl J; Jakovljevic M; Pinton GF; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):648-59. PubMed ID: 22547276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic Aperture Focusing for Multi-Covariate Imaging of Sub-Resolution Targets.
    Morgan MR; Bottenus N; Trahey GE; Walker WF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jun; 67(6):1166-1177. PubMed ID: 31940530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The combined effect of spatial compounding and nonlinear filtering on the speckle reduction in ultrasound images.
    Adam D; Beilin-Nissan S; Friedman Z; Behar V
    Ultrasonics; 2006 Feb; 44(2):166-81. PubMed ID: 16343578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.