These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 25474774)

  • 41. Spatial coherence of backscatter for the nonlinearly produced second harmonic for specific transmit apodizations.
    Fedewa RJ; Wallace KD; Holland MR; Jago JR; Ng GC; Rielly MR; Robinson BS; Miller JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 May; 51(5):576-88. PubMed ID: 15217235
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preliminary study on the separation of specular reflection and backscattering components using synthetic aperture beamforming.
    Nagaoka R; Wilhjelm JE; Hasegawa H
    J Med Ultrason (2001); 2020 Oct; 47(4):493-500. PubMed ID: 32749560
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of phase aberration and noise on extended high frame rate imaging.
    Wang J; Lu JY
    Ultrason Imaging; 2007 Apr; 29(2):105-21. PubMed ID: 17679325
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A two-dimensional array for B-mode and volumetric imaging with multiplexed electrostrictive elements.
    Davidsen RE; Smith SW
    Ultrason Imaging; 1997 Oct; 19(4):235-50. PubMed ID: 9651952
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of element directivity on adaptive beamforming applied to high-frame-rate ultrasound.
    Hasegawa H; Kanai H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Mar; 62(3):511-23. PubMed ID: 25768817
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coherence-based quantification of acoustic clutter sources in medical ultrasound.
    Long J; Long W; Bottenus N; Trahey G
    J Acoust Soc Am; 2020 Aug; 148(2):1051. PubMed ID: 32873040
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spatial coherence analysis applied to aberration correction using a two-dimensional array system.
    Lacefield JC; Waag RC
    J Acoust Soc Am; 2002 Dec; 112(6):2558-66. PubMed ID: 12508977
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multi-covariate Imaging of Sub-resolution Targets.
    Morgan MR; Trahey GE; Walker WF
    IEEE Trans Med Imaging; 2019 Jul; 38(7):1690-1700. PubMed ID: 31095479
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unfocused Field Analysis of a Density-Tapered Spiral Array for High-Volume-Rate 3-D Ultrasound Imaging.
    Maffett R; Boni E; Chee AJY; Yiu BYS; Savoia AS; Ramalli A; Tortoli P; Yu ACH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Oct; 69(10):2810-2822. PubMed ID: 35786553
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Compounding in synthetic aperture imaging.
    Hansen JM; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Sep; 59(9):2054-65. PubMed ID: 23007781
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Short-lag spatial coherence imaging using minimum variance beamforming on dual apertures.
    Qi Y; Wang Y; Yu J; Guo Y
    Biomed Eng Online; 2019 Apr; 18(1):48. PubMed ID: 31014338
    [TBL] [Abstract][Full Text] [Related]  

  • 52. F-k Domain Imaging for Synthetic Aperture Sequential Beamforming.
    Vos HJ; van Neer PL; Mota MM; Verweij MD; van der Steen AF; Volker AW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jan; 63(1):60-71. PubMed ID: 26571525
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CohereNet: A Deep Learning Architecture for Ultrasound Spatial Correlation Estimation and Coherence-Based Beamforming.
    Wiacek A; Gonzalez E; Bell MAL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2574-2583. PubMed ID: 32203018
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Impact of Acoustic Clutter on Large Array Abdominal Imaging.
    Bottenus N; Pinton GF; Trahey G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Apr; 67(4):703-714. PubMed ID: 31715564
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nonlinear simultaneous reconstruction of inhomogeneous compressibility and mass density distributions in unidirectional pulse-echo ultrasound imaging.
    Hesse MC; Salehi L; Schmitz G
    Phys Med Biol; 2013 Sep; 58(17):6163-78. PubMed ID: 23948675
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adaptive scaled coherence factor for ultrasound pixel-based beamforming.
    Lan Z; Zheng C; Peng H; Qiao H
    Ultrasonics; 2022 Feb; 119():106608. PubMed ID: 34793999
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigation of the effect of subcutaneous fat on image quality performance of 2D conventional imaging and tissue harmonic imaging.
    Browne JE; Watson AJ; Hoskins PR; Elliott AT
    Ultrasound Med Biol; 2005 Jul; 31(7):957-64. PubMed ID: 15972201
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Plane-wave ultrasound beamforming using a nonuniform fast Fourier transform.
    Kruizinga P; Mastik F; de Jong N; van der Steen AF; van Soest G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Dec; 59(12):2684-91. PubMed ID: 23221217
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The benefits of compression methods in acoustic coherence tomography.
    Rouyer J; Mensah S; Vasseur C; Lasaygues P
    Ultrason Imaging; 2015 Jul; 37(3):205-23. PubMed ID: 25270352
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of novel imaging probe for optical/acoustic radiation imaging (OARI).
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2013 Nov; 40(11):111910. PubMed ID: 24320443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.