These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 25474774)

  • 61. Equivalence of time and aperture domain additive noise in ultrasound coherence.
    Bottenus NB; Trahey GE
    J Acoust Soc Am; 2015 Jan; 137(1):132-8. PubMed ID: 25618045
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Optimization of acoustic emitted field of transducer array for ultrasound imaging.
    He Z
    Biomed Mater Eng; 2014; 24(1):1201-8. PubMed ID: 24212014
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Toward Quantitative Whole Organ Thermoacoustics With a Clinical Array Plus One Very Low-Frequency Channel Applied to Prostate Cancer Imaging.
    Patch SK; Hull D; See WA; Hanson GW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Feb; 63(2):245-55. PubMed ID: 26731749
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A new synthetic aperture focusing method to suppress the diffraction of ultrasound.
    Chang J; Song TK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Feb; 58(2):327-37. PubMed ID: 21342818
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ultrasound contrast plane wave imaging.
    Couture O; Fink M; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Dec; 59(12):2676-83. PubMed ID: 23221216
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Reverberation Noise Suppression in Ultrasound Channel Signals Using a 3D Fully Convolutional Neural Network.
    Brickson LL; Hyun D; Jakovljevic M; Dahl JJ
    IEEE Trans Med Imaging; 2021 Apr; 40(4):1184-1195. PubMed ID: 33400649
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Spatiotemporal Coherence to Quantify Sources of Image Degradation in Ultrasonic Imaging.
    Vienneau EP; Ozgun KA; Byram BC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1337-1352. PubMed ID: 35175919
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Objective performance testing and quality assurance of medical ultrasound equipment.
    Thijssen JM; Weijers G; de Korte CL
    Ultrasound Med Biol; 2007 Mar; 33(3):460-71. PubMed ID: 17275983
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Scatterer reconstruction and parametrization of homogeneous tissue for ultrasound image simulation.
    Mattausch O; Goksel O
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6350-3. PubMed ID: 26737745
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Comparison of virtual source synthetic aperture beamforming with an element-based model.
    Bottenus N
    J Acoust Soc Am; 2018 May; 143(5):2801. PubMed ID: 29857713
    [TBL] [Abstract][Full Text] [Related]  

  • 71. In vivo application of short-lag spatial coherence imaging in human liver.
    Jakovljevic M; Trahey GE; Nelson RC; Dahl JJ
    Ultrasound Med Biol; 2013 Mar; 39(3):534-42. PubMed ID: 23347642
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Estimating the spatial autocorrelation function for ultrasound scatterers in isotropic media.
    Chen JF; Zagzebski JA; Dong F; Madsen EL
    Med Phys; 1998 May; 25(5):648-55. PubMed ID: 9608474
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Nonlinear ultrasound propagation through layered liquid and tissue-equivalent media: computational and experimental results at high frequency.
    Williams R; Cherin E; Lam TY; Tavakkoli J; Zemp RJ; Foster FS
    Phys Med Biol; 2006 Nov; 51(22):5809-24. PubMed ID: 17068366
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Image-Based Reconstruction of Tissue Scatterers Using Beam Steering for Ultrasound Simulation.
    Mattausch O; Goksel O
    IEEE Trans Med Imaging; 2018 Mar; 37(3):767-780. PubMed ID: 29533894
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Pulsed ultrasound modulated optical tomography utilizing the harmonic response of lock-in detection.
    Ruan H; Mather ML; Morgan SP
    Appl Opt; 2013 Jul; 52(19):4755-62. PubMed ID: 23842276
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility.
    Nightingale K; Soo MS; Nightingale R; Trahey G
    Ultrasound Med Biol; 2002 Feb; 28(2):227-35. PubMed ID: 11937286
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Spatial resolution enhancement of ultrasound images using neural networks.
    Carotenuto R; Sabbi G; Pappalardo M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Aug; 49(8):1039-49. PubMed ID: 12201451
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Simulation of ultrasound two-dimensional array transducers using a frequency domain model.
    Rao M; Varghese T; Zagzebski JA
    Med Phys; 2008 Jul; 35(7):3162-9. PubMed ID: 18697541
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Attenuation estimations using envelope echo data: analysis and simulations.
    Tu H; Zagzebski J; Chen Q
    Ultrasound Med Biol; 2006 Mar; 32(3):377-86. PubMed ID: 16530096
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Ultrasound Imaging Using the Coherence of Estimated Channel Data.
    Yen JT; Lou Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jul; 69(7):2293-2302. PubMed ID: 35604963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.