These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25474804)

  • 21. On modelling large deformations of heterogeneous biological tissues using a mixed finite element formulation.
    Wu T; Hung AP; Hunter P; Mithraratne K
    Comput Methods Biomech Biomed Engin; 2015; 18(5):477-84. PubMed ID: 23895255
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling hemodynamics in intracranial aneurysms: Comparing accuracy of CFD solvers based on finite element and finite volume schemes.
    Botti L; Paliwal N; Conti P; Antiga L; Meng H
    Int J Numer Method Biomed Eng; 2018 Sep; 34(9):e3111. PubMed ID: 29858530
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A framework for biomechanics simulations using four-chamber cardiac models.
    Jafari A; Pszczolkowski E; Krishnamurthy A
    J Biomech; 2019 Jun; 91():92-101. PubMed ID: 31155211
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An accurate, robust, and efficient finite element framework with applications to anisotropic, nearly and fully incompressible elasticity.
    Karabelas E; Gsell MAF; Haase G; Plank G; Augustin CM
    Comput Methods Appl Mech Eng; 2022 May; 394():114887. PubMed ID: 35432634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast and accurate nonlinear hyper-elastic deformation with a posteriori numerical verification of the convergence of solution: Application to the simulation of liver deformation.
    Saidi F; Malti A
    Int J Numer Method Biomed Eng; 2021 May; 37(5):e3444. PubMed ID: 33606358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast computation of soft tissue thermal response under deformation based on fast explicit dynamics finite element algorithm for surgical simulation.
    Zhang J; Chauhan S
    Comput Methods Programs Biomed; 2020 Apr; 187():105244. PubMed ID: 31805458
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An active strain electromechanical model for cardiac tissue.
    Nobile F; Quarteroni A; Ruiz-Baier R
    Int J Numer Method Biomed Eng; 2012 Jan; 28(1):52-71. PubMed ID: 25830205
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduced-order preconditioning for bidomain simulations.
    Deo M; Bauer S; Plank G; Vigmond E
    IEEE Trans Biomed Eng; 2007 May; 54(5):938-42. PubMed ID: 17518292
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study on the Accuracy of Structural and FSI Heart Valves Simulations.
    Luraghi G; Migliavacca F; Rodriguez Matas JF
    Cardiovasc Eng Technol; 2018 Dec; 9(4):723-738. PubMed ID: 30132282
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A nonlinear dynamic finite element approach for simulating muscular hydrostats.
    Vavourakis V; Kazakidi A; Tsakiris DP; Ekaterinaris JA
    Comput Methods Biomech Biomed Engin; 2014; 17(8):917-31. PubMed ID: 23025686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigating the reference domain influence in personalised models of cardiac mechanics : Effect of unloaded geometry on cardiac biomechanics.
    Hadjicharalambous M; Stoeck CT; Weisskopf M; Cesarovic N; Ioannou E; Vavourakis V; Nordsletten DA
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1579-1597. PubMed ID: 34047891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling left ventricular dynamics with characteristic deformation modes.
    Hong BD; Moulton MJ; Secomb TW
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1683-1696. PubMed ID: 31129860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Finite state machine implementation for left ventricle modeling and control.
    King JM; Bergeron CA; Taylor CE
    Biomed Eng Online; 2019 Jan; 18(1):10. PubMed ID: 30700298
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lumped-Parameter and Finite Element Modeling of Heart Failure with Preserved Ejection Fraction.
    Rosalia L; Ozturk C; Roche ET
    J Vis Exp; 2021 Feb; (168):. PubMed ID: 33645575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved discretisation and linearisation of active tension in strongly coupled cardiac electro-mechanics simulations.
    Sundnes J; Wall S; Osnes H; Thorvaldsen T; McCulloch AD
    Comput Methods Biomech Biomed Engin; 2014; 17(6):604-15. PubMed ID: 22800534
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Force-dependent recruitment from myosin OFF-state increases end-systolic pressure-volume relationship in left ventricle.
    Mann CK; Lee LC; Campbell KS; Wenk JF
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2683-2692. PubMed ID: 32346808
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Finite-element-based discretization and regularization strategies for 3-D inverse electrocardiography.
    Wang D; Kirby RM; Johnson CR
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1827-38. PubMed ID: 21382763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GPU-based acceleration of computations in nonlinear finite element deformation analysis.
    Mafi R; Sirouspour S
    Int J Numer Method Biomed Eng; 2014 Mar; 30(3):365-81. PubMed ID: 24166875
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient estimation of personalized biventricular mechanical function employing gradient-based optimization.
    Finsberg H; Xi C; Tan JL; Zhong L; Genet M; Sundnes J; Lee LC; Wall ST
    Int J Numer Method Biomed Eng; 2018 Jul; 34(7):e2982. PubMed ID: 29521015
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.