These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. [Exoproteinases of the oomycete Phytophthora infestans]. Gvozdeva EL; Ievleva EV; Gerasimova NG; Ozeretskovskaia OL; Valueva TA Prikl Biokhim Mikrobiol; 2004; 40(2):194-200. PubMed ID: 15125197 [TBL] [Abstract][Full Text] [Related]
5. [The influence of cultural medium composition on the proteolytic enzyme secretion of fungus Rhizoctonia solani]. Kudriavtseva NN; Gvozdeva EL; Sof'in AV; Valueva TA Prikl Biokhim Mikrobiol; 2010; 46(3):355-62. PubMed ID: 20586290 [TBL] [Abstract][Full Text] [Related]
6. [Extracellular proteinases of filamentous fungi as potential markers of phytopathogenesis]. Dunaevskiĭ IaE; Gruban' TN; Beliakova GA; Belozerskiĭ MA Mikrobiologiia; 2006; 75(6):747-51. PubMed ID: 17205798 [TBL] [Abstract][Full Text] [Related]
7. [Effect of proteinaceous proteinase inhibitors from potato tubers on the growth and development of phytopathogenic microorganisms]. Revina TA; Gerasimova NG; Kladnitskaia GV; Chalenko GI; Valueva TA Prikl Biokhim Mikrobiol; 2008; 44(1):101-5. PubMed ID: 18491605 [TBL] [Abstract][Full Text] [Related]
8. [Interaction between proteinases secreted by the fungal plant pathogen Rhizoctonia solani and natural proteinase inhibitors produced by plants]. Gvozdeva EL; Volotskaia AV; Sof'in AV; Kudriavtseva NN; Revina TA; Valueva TA Prikl Biokhim Mikrobiol; 2006; 42(5):572-9. PubMed ID: 17066958 [TBL] [Abstract][Full Text] [Related]
9. Participation of proteolytic enzymes in the interaction of plants with phytopathogenic microorganisms. Mosolov VV; Valueva TA Biochemistry (Mosc); 2006 Aug; 71(8):838-45. PubMed ID: 16978145 [TBL] [Abstract][Full Text] [Related]
10. Discovery of N-(4-fluoro-2-(phenylamino)phenyl)-pyrazole-4-carboxamides as potential succinate dehydrogenase inhibitors. Zhang A; Yue Y; Yang Y; Yang J; Tao K; Jin H; Hou T Pestic Biochem Physiol; 2019 Jul; 158():175-184. PubMed ID: 31378354 [TBL] [Abstract][Full Text] [Related]
11. Purification and identification of barley (Hordeum vulgare L.) proteins that inhibit the alkaline serine proteinases of Fusarium culmorum. Pekkarinen AI; Jones BL J Agric Food Chem; 2003 Mar; 51(6):1710-7. PubMed ID: 12617610 [TBL] [Abstract][Full Text] [Related]
12. Trypsin-like proteinase produced by Fusarium culmorum grown on grain proteins. Pekkarinen AI; Jones BL J Agric Food Chem; 2002 Jun; 50(13):3849-55. PubMed ID: 12059170 [TBL] [Abstract][Full Text] [Related]
13. The pipg1 gene of the oomycete Phytophthora infestans encodes a fungal-like endopolygalacturonase. Torto TA; Rauser L; Kamoun S Curr Genet; 2002 Mar; 40(6):385-90. PubMed ID: 11919677 [TBL] [Abstract][Full Text] [Related]
14. [Effect of a preparation from Chaetomium fungi on the growth of phytopathogenic fungi]. Tomilova OG; Shternshis MV Prikl Biokhim Mikrobiol; 2006; 42(1):76-80. PubMed ID: 16521581 [TBL] [Abstract][Full Text] [Related]
15. Molecular Characterization and Functional Analysis of PR-1-Like Proteins Identified from the Wheat Head Blight Fungus Fusarium graminearum. Lu S; Edwards MC Phytopathology; 2018 Apr; 108(4):510-520. PubMed ID: 29117786 [TBL] [Abstract][Full Text] [Related]
16. Computational and comparative analyses of 150 full-length cDNA sequences from the oomycete plant pathogen Phytophthora infestans. Win J; Kanneganti TD; Torto-Alalibo T; Kamoun S Fungal Genet Biol; 2006 Jan; 43(1):20-33. PubMed ID: 16380277 [TBL] [Abstract][Full Text] [Related]
17. Biological control of late blight (Phytophthora infestans (Mont.) de Bary) in tomatoes with mycoextracts from Fusarium culmorum and Fusarium graminearum. Cărăbet AF; Grozea I; Chirita R; Badea AM Commun Agric Appl Biol Sci; 2008; 73(2):257-62. PubMed ID: 19226762 [TBL] [Abstract][Full Text] [Related]