BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 25475023)

  • 1. The effect of CuO NPs on reactive oxygen species and cell cycle gene expression in roots of rice.
    Wang S; Liu H; Zhang Y; Xin H
    Environ Toxicol Chem; 2015 Mar; 34(3):554-61. PubMed ID: 25475023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Phytotoxicity of copper oxide nanoparticles to metabolic activity in the roots of rice].
    Wang SL; Zhang YX; Liu HZ; Xin H
    Huan Jing Ke Xue; 2014 May; 35(5):1968-73. PubMed ID: 25055694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential impacts of copper oxide nanoparticles and Copper(II) ions on the uptake and accumulation of arsenic in rice (Oryza sativa).
    Wang X; Sun W; Ma X
    Environ Pollut; 2019 Sep; 252(Pt B):967-973. PubMed ID: 31252135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative stress-induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana.
    Tang Y; He R; Zhao J; Nie G; Xu L; Xing B
    Environ Pollut; 2016 May; 212():605-614. PubMed ID: 27016889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles.
    Moon YS; Park ES; Kim TO; Lee HS; Lee SE
    Environ Toxicol Pharmacol; 2014 Nov; 38(3):922-31. PubMed ID: 25461552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Copper Oxide Nanoparticles on the Growth of Rice (
    Yang Z; Xiao Y; Jiao T; Zhang Y; Chen J; Gao Y
    Int J Environ Res Public Health; 2020 Feb; 17(4):. PubMed ID: 32075321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive Oxygen Species Generated by NADPH Oxidases Promote Radicle Protrusion and Root Elongation during Rice Seed Germination.
    Li WY; Chen BX; Chen ZJ; Gao YT; Chen Z; Liu J
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28098759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural organic matter-induced alleviation of the phytotoxicity to rice (Oryza sativa L.) caused by copper oxide nanoparticles.
    Peng C; Zhang H; Fang H; Xu C; Huang H; Wang Y; Sun L; Yuan X; Chen Y; Shi J
    Environ Toxicol Chem; 2015 Sep; 34(9):1996-2003. PubMed ID: 25868010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings.
    Shaw AK; Hossain Z
    Chemosphere; 2013 Oct; 93(6):906-15. PubMed ID: 23791109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity of CuO Nanoparticles to Structure and Metabolic Activity of Allium cepa Root Tips.
    Deng F; Wang S; Xin H
    Bull Environ Contam Toxicol; 2016 Nov; 97(5):702-708. PubMed ID: 27704188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants.
    Peng C; Duan D; Xu C; Chen Y; Sun L; Zhang H; Yuan X; Zheng L; Yang Y; Yang J; Zhen X; Chen Y; Shi J
    Environ Pollut; 2015 Feb; 197():99-107. PubMed ID: 25521412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of CuO nanoparticles with duckweed (Lemna minor. L): Uptake, distribution and ROS production sites.
    Yue L; Zhao J; Yu X; Lv K; Wang Z; Xing B
    Environ Pollut; 2018 Dec; 243(Pt A):543-552. PubMed ID: 30223239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of different copper oxide particles on cell division and related genes of soybean roots.
    Liu C; Yu Y; Liu H; Xin H
    Plant Physiol Biochem; 2021 Jun; 163():205-214. PubMed ID: 33862500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of early transcriptome responses to copper and cadmium in rice roots.
    Lin CY; Trinh NN; Fu SF; Hsiung YC; Chia LC; Lin CW; Huang HJ
    Plant Mol Biol; 2013 Mar; 81(4-5):507-22. PubMed ID: 23400832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lanthanum regulates the reactive oxygen species in the roots of rice seedlings.
    Liu D; Zheng S; Wang X
    Sci Rep; 2016 Aug; 6():31860. PubMed ID: 27546334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake, Distribution, and Transformation of CuO NPs in a Floating Plant Eichhornia crassipes and Related Stomatal Responses.
    Zhao J; Ren W; Dai Y; Liu L; Wang Z; Yu X; Zhang J; Wang X; Xing B
    Environ Sci Technol; 2017 Jul; 51(13):7686-7695. PubMed ID: 28586199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytotoxicity Assessment of Copper Oxide Nanoparticles on the Germination, Early Seedling Growth, and Physiological Responses in Oryza sativa L.
    Wang W; Liu J; Ren Y; Zhang L; Xue Y; Zhang L; He J
    Bull Environ Contam Toxicol; 2020 Jun; 104(6):770-777. PubMed ID: 32328666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous exposure of wheat (Triticum aestivum L.) to CuO and S nanoparticles alleviates toxicity by reducing Cu accumulation and modulating antioxidant response.
    Huang G; Zuverza-Mena N; White JC; Hu H; Xing B; Dhankher OP
    Sci Total Environ; 2022 Sep; 839():156285. PubMed ID: 35636547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens.
    Shi J; Peng C; Yang Y; Yang J; Zhang H; Yuan X; Chen Y; Hu T
    Nanotoxicology; 2014 Mar; 8(2):179-88. PubMed ID: 23311584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron Plaque: A Barrier Layer to the Uptake and Translocation of Copper Oxide Nanoparticles by Rice Plants.
    Peng C; Chen S; Shen C; He M; Zhang Y; Ye J; Liu J; Shi J
    Environ Sci Technol; 2018 Nov; 52(21):12244-12254. PubMed ID: 30351042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.