BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 25475026)

  • 1. Exposure-based validation list for developmental toxicity screening assays.
    Daston GP; Beyer BK; Carney EW; Chapin RE; Friedman JM; Piersma AH; Rogers JM; Scialli AR
    Birth Defects Res B Dev Reprod Toxicol; 2014 Dec; 101(6):423-8. PubMed ID: 25475026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A different approach to validating screening assays for developmental toxicity.
    Daston GP; Chapin RE; Scialli AR; Piersma AH; Carney EW; Rogers JM; Friedman JM
    Birth Defects Res B Dev Reprod Toxicol; 2010 Dec; 89(6):526-30. PubMed ID: 21086491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment and assessment of a new human embryonic stem cell-based biomarker assay for developmental toxicity screening.
    Palmer JA; Smith AM; Egnash LA; Conard KR; West PR; Burrier RE; Donley EL; Kirchner FR
    Birth Defects Res B Dev Reprod Toxicol; 2013 Aug; 98(4):343-63. PubMed ID: 24123775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exposure-Based Validation of an In Vitro Gastrulation Model for Developmental Toxicity Assays.
    Warkus ELL; Marikawa Y
    Toxicol Sci; 2017 May; 157(1):235-245. PubMed ID: 28184906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The threshold of toxicological concern for prenatal developmental toxicity in rabbits and a comparison to TTC values in rats.
    van Ravenzwaay B; Dammann M; Buesen R; Flick B; Schneider S
    Regul Toxicol Pharmacol; 2012 Oct; 64(1):1-8. PubMed ID: 22705707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative parameter sensitivity in prenatal toxicity studies with substances classified as developmental toxicants.
    Rorije E; van Hienen FJ; Dang ZC; Hakkert BH; Vermeire T; Piersma AH
    Reprod Toxicol; 2012 Sep; 34(2):284-90. PubMed ID: 22652463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive models of prenatal developmental toxicity from ToxCast high-throughput screening data.
    Sipes NS; Martin MT; Reif DM; Kleinstreuer NC; Judson RS; Singh AV; Chandler KJ; Dix DJ; Kavlock RJ; Knudsen TB
    Toxicol Sci; 2011 Nov; 124(1):109-27. PubMed ID: 21873373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-throughput screen for teratogens using human pluripotent stem cells.
    Kameoka S; Babiarz J; Kolaja K; Chiao E
    Toxicol Sci; 2014 Jan; 137(1):76-90. PubMed ID: 24154490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of the evaluation method for teratogenicity using zebrafish embryos.
    Yamashita A; Inada H; Chihara K; Yamada T; Deguchi J; Funabashi H
    J Toxicol Sci; 2014 Jun; 39(3):453-64. PubMed ID: 24849680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profiling the activity of environmental chemicals in prenatal developmental toxicity studies using the U.S. EPA's ToxRefDB.
    Knudsen TB; Martin MT; Kavlock RJ; Judson RS; Dix DJ; Singh AV
    Reprod Toxicol; 2009 Sep; 28(2):209-19. PubMed ID: 19446433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpreting in vitro developmental toxicity test battery results: The consideration of toxicokinetics.
    Bosgra S; Westerhout J
    Reprod Toxicol; 2015 Aug; 55():73-80. PubMed ID: 25462785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numeric Estimates of Teratogenic Severity from Embryo-Fetal Developmental Toxicity Studies.
    Wise LD
    Birth Defects Res B Dev Reprod Toxicol; 2016 Feb; 107(1):60-70. PubMed ID: 26848810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The theoretical and empirical case for in vitro developmental toxicity screens, and potential applications.
    Daston GP
    Teratology; 1996 Jun; 53(6):339-44. PubMed ID: 8910979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilization of juvenile animal studies to determine the human effects and risks of environmental toxicants during postnatal developmental stages.
    Brent RL
    Birth Defects Res B Dev Reprod Toxicol; 2004 Oct; 71(5):303-20. PubMed ID: 15505806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current and future needs for developmental toxicity testing.
    Makris SL; Kim JH; Ellis A; Faber W; Harrouk W; Lewis JM; Paule MG; Seed J; Tassinari M; Tyl R
    Birth Defects Res B Dev Reprod Toxicol; 2011 Oct; 92(5):384-94. PubMed ID: 21922641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of embryonic vascular development in predictive toxicology.
    Knudsen TB; Kleinstreuer NC
    Birth Defects Res C Embryo Today; 2011 Dec; 93(4):312-23. PubMed ID: 22271680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exposure assessments in reproductive and developmental toxicity testing: An IQ-DruSafe industry survey on current practices and experiences in support of exposure-based high dose selection.
    Andrews PA; McNerney ME; DeGeorge JJ
    Regul Toxicol Pharmacol; 2019 Oct; 107():104413. PubMed ID: 31229519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of the enhanced frog embryo teratogenesis assay-Xenopus (FETAX) to determine chemically-induced phenotypic effects.
    Hu L; Zhu J; Rotchell JM; Wu L; Gao J; Shi H
    Sci Total Environ; 2015 Mar; 508():258-65. PubMed ID: 25481254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of alternative methods for developmental toxicity testing.
    Piersma AH
    Toxicol Lett; 2004 Apr; 149(1-3):147-53. PubMed ID: 15093260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the predictive validity of frog embryo teratogenesis assay-Xenopus (FETAX).
    Fort DJ; Stover EL; Farmer DR; Lemen JK
    Teratog Carcinog Mutagen; 2000; 20(2):87-98. PubMed ID: 10679752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.