These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 25475400)

  • 1. Determination of the correct migration time and other parameters of the Haarhoff-van der Linde function from the peak geometry characteristics.
    Dubský P; Dvořák M; Műllerová L; Gaš B
    Electrophoresis; 2015 Mar; 36(5):655-61. PubMed ID: 25475400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electromigration dispersion in capillary zone electrophoresis. Experimental validation of use of the Haarhoff-Van der Linde function.
    Erny GL; Bergström ET; Goodall DM
    J Chromatogr A; 2002 Jun; 959(1-2):229-39. PubMed ID: 12141548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting peak shape in capillary zone electrophoresis: a generic approach to parametrizing peaks using the Haarhoff-Van der Linde (HVL) function.
    Erny GL; Bergström ET; Goodall DM; Grieb S
    Anal Chem; 2001 Oct; 73(20):4862-72. PubMed ID: 11681462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peak shape modeling by Haarhoff-Van der Linde function for the determination of correct migration times: a new insight into affinity capillary electrophoresis.
    Le Saux T; Varenne A; Gareil P
    Electrophoresis; 2005 Aug; 26(16):3094-104. PubMed ID: 16041707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CEval: All-in-one software for data processing and statistical evaluations in affinity capillary electrophoresis.
    Dubský P; Ördögová M; Malý M; Riesová M
    J Chromatogr A; 2016 May; 1445():158-65. PubMed ID: 27062723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A nonlinear electrophoretic model for PeakMaster: I. mathematical model.
    Hruška V; Riesová M; Gaš B
    Electrophoresis; 2012 Mar; 33(6):923-30. PubMed ID: 22528412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stump-like mathematical model and computer simulation on dynamic separation of capillary zone electrophoresis with different sample injections.
    Zhang J; Huang QF; Jin J; Chang J; Li S; Fan LY; Cao CX
    Talanta; 2013 Feb; 105():278-86. PubMed ID: 23598020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new mathematical function for describing electrophoretic peaks.
    García-Alvarez-Coque MC; Simó-Alfonso EF; Sanchis-Mallols JM; Baeza-Baeza JJ
    Electrophoresis; 2005 Jun; 26(11):2076-85. PubMed ID: 15880552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong complexation of water-soluble betulin derivatives with (2-hydroxypropyl)-γ-cyclodextrin studied by affinity capillary electrophoresis.
    Sursyakova VV; Levdansky VA; Rubaylo AI
    Electrophoresis; 2020 Jan; 41(1-2):112-115. PubMed ID: 31670400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of binding constants for strong complexation by affinity capillary electrophoresis: the example of complexes of ester betulin derivatives with (2-hydroxypropyl)-γ-cyclodextrin.
    Sursyakova VV; Levdansky VA; Rubaylo AI
    Anal Bioanal Chem; 2020 Sep; 412(23):5615-5625. PubMed ID: 32617760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of theoretical and semi-empirical peak models on the efficiency calculation in chiral chromatography.
    Burk RJ; Wahab MF; Armstrong DW
    Talanta; 2024 Sep; 277():126308. PubMed ID: 38820823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of intracellular Th1 cytokine secretion data using parametric methodology.
    Ramanathan M
    Cytometry; 1998 Jun; 32(2):147-56. PubMed ID: 9627228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boundary values of binding constants determined by affinity capillary electrophoresis.
    Sursyakova VV; Rubaylo AI
    J Sep Sci; 2021 Nov; 44(22):4200-4203. PubMed ID: 34510741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nonlinear electrophoretic model for PeakMaster: part III. Electromigration dispersion in systems that contain a neutral complex-forming agent and a fully charged analyte. Theory.
    Hruška V; Svobodová J; Beneš M; Gaš B
    J Chromatogr A; 2012 Dec; 1267():102-8. PubMed ID: 22818776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of shapes and maximums of analyte peaks based on solute mobilities in capillary electrophoresis.
    Fang N; Ting E; Chen DD
    Anal Chem; 2004 Mar; 76(6):1708-14. PubMed ID: 15018572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precision in estimating the frequency separation between spectral lines.
    Jupp PE; Harris KD; Aliev AE
    J Magn Reson; 1998 Nov; 135(1):23-9. PubMed ID: 9799670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyte and system eigenpeaks in nonaqueous capillary zone electrophoresis: theoretical description and experimental confirmation with methanol as solvent.
    Vceláková K; Zusková I; Porras SP; Gas B; Kenndler E
    Electrophoresis; 2005 Jan; 26(2):463-72. PubMed ID: 15657898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elemental speciation by parallel elemental and molecular mass spectrometry and peak profile matching.
    Sacks GL; Derry LA; Brenna JT
    Anal Chem; 2006 Dec; 78(24):8445-55. PubMed ID: 17165838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sample zone dynamics in peak mode isotachophoresis.
    Khurana TK; Santiago JG
    Anal Chem; 2008 Aug; 80(16):6300-7. PubMed ID: 18642874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. System zones in capillary zone electrophoresis.
    Gas B; Kenndler E
    Electrophoresis; 2004 Dec; 25(23-24):3901-12. PubMed ID: 15597426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.