BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

582 related articles for article (PubMed ID: 25475660)

  • 1. Oxidative phosphorylation versus glycolysis: what fuel do spermatozoa use?
    du Plessis SS; Agarwal A; Mohanty G; van der Linde M
    Asian J Androl; 2015; 17(2):230-5. PubMed ID: 25475660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial ATP is required for the maintenance of membrane integrity in stallion spermatozoa, whereas motility requires both glycolysis and oxidative phosphorylation.
    Davila MP; Muñoz PM; Bolaños JM; Stout TA; Gadella BM; Tapia JA; da Silva CB; Ferrusola CO; Peña FJ
    Reproduction; 2016 Dec; 152(6):683-694. PubMed ID: 27798283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy metabolism and sperm function.
    Miki K
    Soc Reprod Fertil Suppl; 2007; 65():309-25. PubMed ID: 17644971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serum albumin and HCO3- regulate separate pools of ATP in human spermatozoa.
    Hereng TH; Elgstøen KB; Eide L; Rosendal KR; Skålhegg BS
    Hum Reprod; 2014 May; 29(5):918-30. PubMed ID: 24578478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement.
    Mukai C; Okuno M
    Biol Reprod; 2004 Aug; 71(2):540-7. PubMed ID: 15084484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycolysis plays an important role in energy transfer from the base to the distal end of the flagellum in mouse sperm.
    Takei GL; Miyashiro D; Mukai C; Okuno M
    J Exp Biol; 2014 Jun; 217(Pt 11):1876-86. PubMed ID: 24577453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative phosphorylation rather than glycolysis is the primary energy source for sperm motility in the mussels Mytilus edulis.
    Kong H; Sokolova IM
    Comp Biochem Physiol B Biochem Mol Biol; 2024; 270():110909. PubMed ID: 37898360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localisation and function of glucose transporter GLUT1 in chicken (Gallus gallus domesticus) spermatozoa: relationship between ATP production pathways and flagellar motility.
    Setiawan R; Priyadarshana C; Tajima A; Travis AJ; Asano A
    Reprod Fertil Dev; 2020 Apr; 32(7):697-705. PubMed ID: 32317094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrosative stress by peroxynitrite impairs ATP production in human spermatozoa.
    Uribe P; Treulen F; Boguen R; Sánchez R; Villegas JV
    Andrologia; 2017 Apr; 49(3):. PubMed ID: 27135897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rosiglitazone Improves Stallion Sperm Motility, ATP Content, and Mitochondrial Function.
    Swegen A; Lambourne SR; Aitken RJ; Gibb Z
    Biol Reprod; 2016 Nov; 95(5):107. PubMed ID: 27683266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spermatozoa motility in bivalves: Signaling, flagellar beating behavior, and energetics.
    Boulais M; Demoy-Schneider M; Alavi SMH; Cosson J
    Theriogenology; 2019 Sep; 136():15-27. PubMed ID: 31234053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exogenous pyruvate accelerates glycolysis and promotes capacitation in human spermatozoa.
    Hereng TH; Elgstøen KB; Cederkvist FH; Eide L; Jahnsen T; Skålhegg BS; Rosendal KR
    Hum Reprod; 2011 Dec; 26(12):3249-63. PubMed ID: 21946930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of mitochondria in energy production for human sperm motility.
    Piomboni P; Focarelli R; Stendardi A; Ferramosca A; Zara V
    Int J Androl; 2012 Apr; 35(2):109-24. PubMed ID: 21950496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotide content, oxidative phosphorylation, morphology, and fertilizing capacity of turbot (Psetta maxima) spermatozoa during the motility period.
    Dreanno C; Cosson J; Suquet M; Seguin F; Dorange G; Billard R
    Mol Reprod Dev; 1999 Jun; 53(2):230-43. PubMed ID: 10331461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of Mitochondrial Activity and OXPHOS in ATP Synthesis During the Motility Phase of Spermatozoa in the Pacific Oyster, Crassostrea gigas.
    Boulais M; Soudant P; Le Goïc N; Quéré C; Boudry P; Suquet M
    Biol Reprod; 2015 Nov; 93(5):118. PubMed ID: 26423125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adenine nucleotide metabolism and a role for AMP in modulating flagellar waveforms in mouse sperm.
    Vadnais ML; Cao W; Aghajanian HK; Haig-Ladewig L; Lin AM; Al-Alao O; Gerton GL
    Biol Reprod; 2014 Jun; 90(6):128. PubMed ID: 24740601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of phosphocreatine kinase in the motility of human spermatozoa supported by different metabolic substrates.
    Yeung CH; Majumder GC; Rolf C; Behre HM; Cooper TG
    Mol Hum Reprod; 1996 Aug; 2(8):591-6. PubMed ID: 9239671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spermatozoa: models for studying regulatory aspects of energy metabolism.
    Kamp G; Büsselmann G; Lauterwein J
    Experientia; 1996 May; 52(5):487-94. PubMed ID: 8641386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional relationships between capacitation-dependent cell signaling and compartmentalized metabolic pathways in murine spermatozoa.
    Travis AJ; Jorgez CJ; Merdiushev T; Jones BH; Dess DM; Diaz-Cueto L; Storey BT; Kopf GS; Moss SB
    J Biol Chem; 2001 Mar; 276(10):7630-6. PubMed ID: 11115497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy pathways associated with sustained spermatozoon motility in the endangered Siberian sturgeon Acipenser baerii.
    Rahi D; Dzyuba B; Xin M; Cheng Y; Dzyuba V
    J Fish Biol; 2020 Aug; 97(2):435-443. PubMed ID: 32415790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.