BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

582 related articles for article (PubMed ID: 25475660)

  • 21. The role of glucose in supporting motility and capacitation in human spermatozoa.
    Williams AC; Ford WC
    J Androl; 2001; 22(4):680-95. PubMed ID: 11451366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cell bioenergetics and ATP production of boar spermatozoa.
    Prieto OB; Algieri C; Spinaci M; Trombetti F; Nesci S; Bucci D
    Theriogenology; 2023 Oct; 210():162-168. PubMed ID: 37517301
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relationship between intracellular calcium, energy metabolism, and motility of ram sperm.
    Breitbart H; Nass-Arden L
    Arch Androl; 1995; 35(2):83-92. PubMed ID: 8579478
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of glycolysis and oxidative phosphorylation as energy sources for mammalian sperm motility, using the combination of fluorescence imaging, laser tweezers, and real-time automated tracking and trapping.
    Nascimento JM; Shi LZ; Tam J; Chandsawangbhuwana C; Durrant B; Botvinick EL; Berns MW
    J Cell Physiol; 2008 Dec; 217(3):745-51. PubMed ID: 18683212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cyclic FEE Peptide Improves Human Sperm Movement Parameters without Modification of Their Energy Metabolism.
    Le Foll N; Pont JC; L'Hostis A; Guilbert T; Bouillaud F; Wolf JP; Ziyyat A
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681924
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rabbit spermatozoa: a model system for studying ATP homeostasis and motility.
    Minelli A; Moroni M; Castellini C; Lattaioli P; Mezzasoma I; Ronquist G
    J Androl; 1999; 20(2):259-66. PubMed ID: 10232661
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compartmentalization of a unique ADP/ATP carrier protein SFEC (Sperm Flagellar Energy Carrier, AAC4) with glycolytic enzymes in the fibrous sheath of the human sperm flagellar principal piece.
    Kim YH; Haidl G; Schaefer M; Egner U; Mandal A; Herr JC
    Dev Biol; 2007 Feb; 302(2):463-76. PubMed ID: 17137571
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differences in ATP Generation Via Glycolysis and Oxidative Phosphorylation and Relationships with Sperm Motility in Mouse Species.
    Tourmente M; Villar-Moya P; Rial E; Roldan ER
    J Biol Chem; 2015 Aug; 290(33):20613-26. PubMed ID: 26048989
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Marine fish spermatozoa: racing ephemeral swimmers.
    Cosson J; Groison AL; Suquet M; Fauvel C; Dreanno C; Billard R
    Reproduction; 2008 Sep; 136(3):277-94. PubMed ID: 18524881
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sperm mitochondrial regulation in motility and fertility in horses.
    Meyers S; Bulkeley E; Foutouhi A
    Reprod Domest Anim; 2019 Sep; 54 Suppl 3():22-28. PubMed ID: 31512320
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure and beating behavior of the sperm motility apparatus in aquatic animals.
    Bondarenko V; Cosson J
    Theriogenology; 2019 Sep; 135():152-163. PubMed ID: 31216506
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contributions of glycolysis and oxidative phosphorylation to adenosine 5'-triphosphate production in AS-30D hepatoma cells.
    Nakashima RA; Paggi MG; Pedersen PL
    Cancer Res; 1984 Dec; 44(12 Pt 1):5702-6. PubMed ID: 6498833
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrastructural evidence that motility changes caused by variations in ATP, Mg2+ , and ADP correlate to conformational changes in reactivated bull sperm axonemes.
    Lesich KA; de Pinho TG; Dang L; Lindemann CB
    Cytoskeleton (Hoboken); 2014 Nov; 71(11):649-61. PubMed ID: 25430605
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy metabolism in mammalian sperm motility.
    Amaral A
    WIREs Mech Dis; 2022 Sep; 14(5):e1569. PubMed ID: 35680646
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzyme activity in energy supply of spermatozoon motility in two taxonomically distant fish species (sterlet Acipenser ruthenus, Acipenseriformes and common carp Cyprinus carpio, Cypriniformes).
    Dzyuba V; Dzyuba B; Cosson J; Rodina M
    Theriogenology; 2016 Mar; 85(4):567-74. PubMed ID: 26483312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Signaling mechanisms in mammalian sperm motility.
    Freitas MJ; Vijayaraghavan S; Fardilha M
    Biol Reprod; 2017 Jan; 96(1):2-12. PubMed ID: 28395326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of mitochondrial uncoupling and glycolysis inhibition on ram sperm functionality.
    Losano J; Angrimani D; Dalmazzo A; Rui BR; Brito MM; Mendes CM; Kawai G; Vannucchi CI; Assumpção M; Barnabe VH; Nichi M
    Reprod Domest Anim; 2017 Apr; 52(2):289-297. PubMed ID: 28058736
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sperm metabolism of the telost fishes Chalcalburnus chalcoides and Oncorhynchus mykiss and its relation to motility and viability.
    Lahnsteiner F; Berger B; Weismann T
    J Exp Zool; 1999 Sep; 284(4):454-65. PubMed ID: 10451423
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glycolysis and sperm motility: does a spoonful of sugar help the flagellum go round?
    Ford WC
    Hum Reprod Update; 2006; 12(3):269-74. PubMed ID: 16407453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An interdisciplinary systems approach to study sperm physiology and evolution.
    Shi LZ; Nascimento J; Botvinick E; Durrant B; Berns MW
    Wiley Interdiscip Rev Syst Biol Med; 2011; 3(1):36-47. PubMed ID: 21064038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.