These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 25475694)
1. Construction of a hypervirulent and specific mycoinsecticide for locust control. Fang W; Lu HL; King GF; St Leger RJ Sci Rep; 2014 Dec; 4():7345. PubMed ID: 25475694 [TBL] [Abstract][Full Text] [Related]
2. A scorpion neurotoxin increases the potency of a fungal insecticide. Wang C; St Leger RJ Nat Biotechnol; 2007 Dec; 25(12):1455-6. PubMed ID: 17994009 [TBL] [Abstract][Full Text] [Related]
3. Interaction between Paranosema locustae and Metarhizium anisopliae var. acridum, two pathogens of the desert locust, Schistocerca gregaria under laboratory conditions. Tounou AK; Kooyman C; Douro-Kpindou OK; Poehling HM J Invertebr Pathol; 2008 Mar; 97(3):203-10. PubMed ID: 18005982 [TBL] [Abstract][Full Text] [Related]
4. Increased and sex-selective avian predation of desert locusts Schistocerca gregaria treated with Metarhizium acridum. Mullié WC; Cheke RA; Young S; Ibrahim AB; Murk AJ PLoS One; 2021; 16(1):e0244733. PubMed ID: 33395451 [TBL] [Abstract][Full Text] [Related]
5. Integration of an insecticidal scorpion toxin (BjαIT) gene into Metarhizium acridum enhances fungal virulence towards Locusta migratoria manilensis. Peng G; Xia Y Pest Manag Sci; 2015 Jan; 71(1):58-64. PubMed ID: 25488590 [TBL] [Abstract][Full Text] [Related]
6. MaMk1, a FUS3/KSS1-type mitogen-activated protein kinase gene, is required for appressorium formation, and insect cuticle penetration of the entomopathogenic fungus Metarhizium acridum. Jin K; Han L; Xia Y J Invertebr Pathol; 2014 Jan; 115():68-75. PubMed ID: 24184951 [TBL] [Abstract][Full Text] [Related]
7. The inhibitory effect of the fungal toxin, destruxin A, on behavioural fever in the desert locust. Hunt VL; Charnley AK J Insect Physiol; 2011 Oct; 57(10):1341-6. PubMed ID: 21729702 [TBL] [Abstract][Full Text] [Related]
8. Sublethal effects of mixed fungal infections on the Moroccan locust, Dociostaurus maroccanus. Valverde-Garcia P; Santiago-Álvarez C; Thomas MB; Maranhao EAA; Garrido-Jurado I; Quesada-Moraga E J Invertebr Pathol; 2019 Feb; 161():61-69. PubMed ID: 30594516 [TBL] [Abstract][Full Text] [Related]
9. Increased virulence in the locust-specific fungal pathogen Metarhizium acridum expressing dsRNAs targeting the host F Hu J; Xia Y Pest Manag Sci; 2019 Jan; 75(1):180-186. PubMed ID: 29797423 [TBL] [Abstract][Full Text] [Related]
10. Improved efficacy of an arthropod toxin expressing fungus against insecticide-resistant malaria-vector mosquitoes. Bilgo E; Lovett B; Fang W; Bende N; King GF; Diabate A; St Leger RJ Sci Rep; 2017 Jun; 7(1):3433. PubMed ID: 28611355 [TBL] [Abstract][Full Text] [Related]
11. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum. Zhang W; Chen J; Keyhani NO; Zhang Z; Li S; Xia Y BMC Genomics; 2015 Oct; 16():867. PubMed ID: 26503342 [TBL] [Abstract][Full Text] [Related]
12. Dose-dependent behavioural fever responses in desert locusts challenged with the entomopathogenic fungus Metarhizium acridum. Clancy LM; Jones R; Cooper AL; Griffith GW; Santer RD Sci Rep; 2018 Sep; 8(1):14222. PubMed ID: 30242193 [TBL] [Abstract][Full Text] [Related]
13. Development of a PCR-based diagnostic assay for the specific detection of the entomopathogenic fungus Metarhizium anisopliae var. acridum. Entz SC; Johnson DL; Kawchuk LM Mycol Res; 2005 Nov; 109(Pt 11):1302-12. PubMed ID: 16279424 [TBL] [Abstract][Full Text] [Related]
14. MaPacC, a pH-responsive transcription factor, negatively regulates thermotolerance and contributes to conidiation and virulence in Metarhizium acridum. Zhang M; Wei Q; Xia Y; Jin K Curr Genet; 2020 Apr; 66(2):397-408. PubMed ID: 31471639 [TBL] [Abstract][Full Text] [Related]
15. The effect of climate variability in the efficacy of the entomopathogenic fungus Metarhizium acridum against the desert locust Schistocerca gregaria. Kamga SF; Ndjomatchoua FT; Guimapi RA; Klingen I; Tchawoua C; Hjelkrem AR; Thunes KH; Kakmeni FM Sci Rep; 2022 May; 12(1):7535. PubMed ID: 35534636 [TBL] [Abstract][Full Text] [Related]
16. Pathological and physiological responses of ring-necked pheasant chicks following dietary exposure to the fungus Metarhizium flavoviride, a biocontrol agent for locusts in Africa. Smits JE; Johnson DL; Lomer C J Wildl Dis; 1999 Apr; 35(2):194-203. PubMed ID: 10231746 [TBL] [Abstract][Full Text] [Related]
17. Adult survival, maturation, and reproduction of the desert locust Schistocerca gregaria infected with the fungus Metarhizium anisopliae var acridum. Blanford S; Thomas MB J Invertebr Pathol; 2001 Jul; 78(1):1-8. PubMed ID: 11500087 [TBL] [Abstract][Full Text] [Related]
18. Altered immunity in crowded locust reduced fungal (Metarhizium anisopliae) pathogenesis. Wang Y; Yang P; Cui F; Kang L PLoS Pathog; 2013 Jan; 9(1):e1003102. PubMed ID: 23326229 [TBL] [Abstract][Full Text] [Related]
19. Assessment of health and growth of ring-necked pheasants following consumption of infected insects or conidia of entomopathogenic fungi, Metarhizium anisopliae var. acridum and Beauveria bassiana, from Madagascar and North America. Johnson DL; Smits JE; Jaronski ST; Weaver DK J Toxicol Environ Health A; 2002 Dec; 65(24):2145-62. PubMed ID: 12515592 [TBL] [Abstract][Full Text] [Related]
20. Locusts increase carbohydrate consumption to protect against a fungal biopesticide. Graham RI; Deacutis JM; Pulpitel T; Ponton F; Simpson SJ; Wilson K J Insect Physiol; 2014 Oct; 69():27-34. PubMed ID: 24862155 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]