These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25475732)

  • 1. Three-dimensional human arterial wall models for in vitro permeability assessment of drug and nanocarriers.
    Chetprayoon P; Matsusaki M; Akashi M
    Biochem Biophys Res Commun; 2015 Jan; 456(1):392-7. PubMed ID: 25475732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of saquinavir across human brain-microvascular endothelial cells by poly(lactide-co-glycolide) nanoparticles with surface poly-(γ-glutamic acid).
    Kuo YC; Yu HW
    Int J Pharm; 2011 Sep; 416(1):365-75. PubMed ID: 21736932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological and histological evaluations of 3D-layered blood vessel constructs prepared by hierarchical cell manipulation.
    Matsusaki M; Kadowaki K; Adachi E; Sakura T; Yokoyama U; Ishikawa Y; Akashi M
    J Biomater Sci Polym Ed; 2012; 23(1-4):63-79. PubMed ID: 21176392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of ornithine decarboxylase during the transport of saquinavir across the blood-brain barrier using composite polymeric nanocarriers under an electromagnetic field.
    Kuo YC; Yu HW
    Colloids Surf B Biointerfaces; 2011 Dec; 88(2):627-34. PubMed ID: 21855303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size effect of amphiphilic poly(γ-glutamic acid) nanoparticles on cellular uptake and maturation of dendritic cells in vivo.
    Shima F; Uto T; Akagi T; Baba M; Akashi M
    Acta Biomater; 2013 Nov; 9(11):8894-901. PubMed ID: 23770225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bioengineered array of 3D microvessels for vascular permeability assay.
    Lee H; Kim S; Chung M; Kim JH; Jeon NL
    Microvasc Res; 2014 Jan; 91():90-8. PubMed ID: 24333621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of analytical methods for evaluating the quality of dissociated and associated amphiphilic poly(γ-glutamic acid) nanoparticles.
    Ikeda M; Akagi T; Nagao M; Akashi M
    Anal Bioanal Chem; 2018 Jul; 410(18):4445-4457. PubMed ID: 29931574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodistribution of (125)I-labeled polymeric vaccine carriers after subcutaneous injection.
    Toita R; Kanai Y; Watabe H; Nakao K; Yamamoto S; Hatazawa J; Akashi M
    Bioorg Med Chem; 2013 Sep; 21(17):5310-5. PubMed ID: 23830700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of polyion complex nanoparticles composed of poly(amino acid) using hydrophobic interactions.
    Akagi T; Watanabe K; Kim H; Akashi M
    Langmuir; 2010 Feb; 26(4):2406-13. PubMed ID: 20017513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of size tunable amphiphilic poly(amino acid) nanoparticles.
    Kim H; Akagi T; Akashi M
    Macromol Biosci; 2009 Sep; 9(9):842-8. PubMed ID: 19422015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Hydrophobic Side Chains in the Induction of Immune Responses by Nanoparticle Adjuvants Consisting of Amphiphilic Poly(γ-glutamic acid).
    Shima F; Akagi T; Akashi M
    Bioconjug Chem; 2015 May; 26(5):890-8. PubMed ID: 25865284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of biodegradable nanoparticles based on poly(gamma-glutamic acid) with l-phenylalanine as a protein carrier.
    Akagi T; Kaneko T; Kida T; Akashi M
    J Control Release; 2005 Nov; 108(2-3):226-36. PubMed ID: 16125267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an improved three-dimensional in vitro intestinal mucosa model for drug absorption evaluation.
    Li N; Wang D; Sui Z; Qi X; Ji L; Wang X; Yang L
    Tissue Eng Part C Methods; 2013 Sep; 19(9):708-19. PubMed ID: 23350801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. β-cyclodextrin-poly(β-amino ester) nanoparticles for sustained drug delivery across the blood-brain barrier.
    Gil ES; Wu L; Xu L; Lowe TL
    Biomacromolecules; 2012 Nov; 13(11):3533-41. PubMed ID: 23066958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of nanoparticles composed of chitosan/poly-gamma-glutamic acid and evaluation of their permeability through Caco-2 cells.
    Lin YH; Chung CK; Chen CT; Liang HF; Chen SC; Sung HW
    Biomacromolecules; 2005; 6(2):1104-12. PubMed ID: 15762683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interleukin-1β induces an inflammatory response and the breakdown of the endothelial cell layer in an improved human THBMEC-based in vitro blood-brain barrier model.
    Labus J; Häckel S; Lucka L; Danker K
    J Neurosci Methods; 2014 May; 228():35-45. PubMed ID: 24631939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of Poly(n-butylcyano-acrylate) nanoparticles across the blood-brain barrier in vitro and their influence on barrier integrity.
    Rempe R; Cramer S; Hüwel S; Galla HJ
    Biochem Biophys Res Commun; 2011 Mar; 406(1):64-9. PubMed ID: 21295549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyethyleneimine/poly-(γ-glutamic acid)/poly(lactide-co-glycolide) nanoparticles for loading and releasing antiretroviral drug.
    Kuo YC; Yu HW
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):158-64. PubMed ID: 21764569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs.
    Lin YH; Sonaje K; Lin KM; Juang JH; Mi FL; Yang HW; Sung HW
    J Control Release; 2008 Dec; 132(2):141-9. PubMed ID: 18817821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein direct delivery to dendritic cells using nanoparticles based on amphiphilic poly(amino acid) derivatives.
    Akagi T; Wang X; Uto T; Baba M; Akashi M
    Biomaterials; 2007 Aug; 28(23):3427-36. PubMed ID: 17482261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.