BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 2547591)

  • 1. Calcitonin receptors as markers for osteoclastic differentiation: correlation between generation of bone-resorptive cells and cells that express calcitonin receptors in mouse bone marrow cultures.
    Hattersley G; Chambers TJ
    Endocrinology; 1989 Sep; 125(3):1606-12. PubMed ID: 2547591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of interleukin 3 and of granulocyte-macrophage and macrophage colony stimulating factors on osteoclast differentiation from mouse hemopoietic tissue.
    Hattersley G; Chambers TJ
    J Cell Physiol; 1990 Jan; 142(1):201-9. PubMed ID: 2153687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of osteoclastic function in mouse bone marrow cultures: multinuclearity and tartrate-resistant acid phosphatase are unreliable markers for osteoclastic differentiation.
    Hattersley G; Chambers TJ
    Endocrinology; 1989 Apr; 124(4):1689-96. PubMed ID: 2924719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of prostaglandins E1, E2, and F2 alpha on osteoclast formation in mouse bone marrow cultures.
    Collins DA; Chambers TJ
    J Bone Miner Res; 1991 Feb; 6(2):157-64. PubMed ID: 1851370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of the calcitonin receptor in bone marrow cell cultures and in bone: a specific marker of the differentiated osteoclast that is regulated by calcitonin.
    Lee SK; Goldring SR; Lorenzo JA
    Endocrinology; 1995 Oct; 136(10):4572-81. PubMed ID: 7664679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of calcitonin receptors by 1 alpha, 25-dihydroxyvitamin D3 in osteoclast-like multinucleated cells formed from mouse bone marrow cells.
    Takahashi N; Akatsu T; Sasaki T; Nicholson GC; Moseley JM; Martin TJ; Suda T
    Endocrinology; 1988 Sep; 123(3):1504-10. PubMed ID: 2841098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of continuous calcitonin treatment on osteoclast-like cell development and calcitonin receptor expression in mouse bone marrow cultures.
    Ikegame M; Rakopoulos M; Martin TJ; Moseley JM; Findlay DM
    J Bone Miner Res; 1996 Apr; 11(4):456-65. PubMed ID: 8992876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone cells required for osteoclastic resorption but not for osteoclastic differentiation.
    Owens JM; Gallagher AC; Chambers TJ
    Biochem Biophys Res Commun; 1996 May; 222(2):225-9. PubMed ID: 8670187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential expression of phenotype markers for osteoclasts during differentiation of precursors for multinucleated cells formed in long-term human marrow cultures.
    Kurihara N; Gluck S; Roodman GD
    Endocrinology; 1990 Dec; 127(6):3215-21. PubMed ID: 1701138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of osteoclast formation by parathyroid hormone depends on an action on stromal cells.
    Fuller K; Owens JM; Chambers TJ
    J Endocrinol; 1998 Sep; 158(3):341-50. PubMed ID: 9846163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcitonin responsiveness and receptor expression in porcine and murine osteoclasts: a comparative study.
    Galvin RJ; Bryan P; Venugopalan M; Smith DP; Thomas JE
    Bone; 1998 Sep; 23(3):233-40. PubMed ID: 9737345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The biological roles of the third component of complement in osteoclast formation.
    Sato T; Abe E; Jin CH; Hong MH; Katagiri T; Kinoshita T; Amizuka N; Ozawa H; Suda T
    Endocrinology; 1993 Jul; 133(1):397-404. PubMed ID: 8319587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of osteoclasts from hemopoietic cells and a multipotential cell line in vitro.
    Hattersley G; Chambers TJ
    J Cell Physiol; 1989 Sep; 140(3):478-82. PubMed ID: 2777887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prostaglandin E2 promotes osteoclast formation in murine hematopoietic cultures through an action on hematopoietic cells.
    Collins DA; Chambers TJ
    J Bone Miner Res; 1992 May; 7(5):555-61. PubMed ID: 1615762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of transforming growth factor beta 1 on the regulation of osteoclastic development and function.
    Hattersley G; Chambers TJ
    J Bone Miner Res; 1991 Feb; 6(2):165-72. PubMed ID: 1851371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of continuous calcitonin treatment on osteoclasts derived from cocultures of mouse marrow stromal and spleen cells.
    Liu BY; Wang JT; Leu JS; Chiang CP; Hsieh CC; Kwan HW
    J Formos Med Assoc; 2000 Feb; 99(2):140-50. PubMed ID: 10770029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of osteoclasts in cultures of rabbit bone marrow and spleen cells.
    Fuller K; Chambers TJ
    J Cell Physiol; 1987 Sep; 132(3):441-52. PubMed ID: 3308907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of protease-activated receptor-2 leads to inhibition of osteoclast differentiation.
    Smith R; Ransjö M; Tatarczuch L; Song SJ; Pagel C; Morrison JR; Pike RN; Mackie EJ
    J Bone Miner Res; 2004 Mar; 19(3):507-16. PubMed ID: 15040840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning of an osteoblastic cell line involved in the formation of osteoclast-like cells.
    Yamashita T; Asano K; Takahashi N; Akatsu T; Udagawa N; Sasaki T; Martin TJ; Suda T
    J Cell Physiol; 1990 Dec; 145(3):587-95. PubMed ID: 1703173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular and hormonal factors influencing monocyte differentiation to osteoclastic bone-resorbing cells.
    Quinn JM; McGee JO; Athanasou NA
    Endocrinology; 1994 Jun; 134(6):2416-23. PubMed ID: 8194468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.