These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

482 related articles for article (PubMed ID: 25475910)

  • 1. Comparative evaluation of gene set analysis approaches for RNA-Seq data.
    Rahmatallah Y; Emmert-Streib F; Glazko G
    BMC Bioinformatics; 2014 Dec; 15(1):397. PubMed ID: 25475910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene set analysis approaches for RNA-seq data: performance evaluation and application guideline.
    Rahmatallah Y; Emmert-Streib F; Glazko G
    Brief Bioinform; 2016 May; 17(3):393-407. PubMed ID: 26342128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic data sets for the identification of key ingredients for RNA-seq differential analysis.
    Rigaill G; Balzergue S; Brunaud V; Blondet E; Rau A; Rogier O; Caius J; Maugis-Rabusseau C; Soubigou-Taconnat L; Aubourg S; Lurin C; Martin-Magniette ML; Delannoy E
    Brief Bioinform; 2018 Jan; 19(1):65-76. PubMed ID: 27742662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical detection of differentially expressed genes based on RNA-seq: from biological to phylogenetic replicates.
    Gu X
    Brief Bioinform; 2016 Mar; 17(2):243-8. PubMed ID: 26108230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting Multivariate Gene Interactions in RNA-Seq Data Using Optimal Bayesian Classification.
    Knight JM; Ivanov I; Triff K; Chapkin RS; Dougherty ER
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(2):484-493. PubMed ID: 26441451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ToPASeq: an R package for topology-based pathway analysis of microarray and RNA-Seq data.
    Ihnatova I; Budinska E
    BMC Bioinformatics; 2015 Oct; 16():350. PubMed ID: 26514335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of high variability in gene expression from single-cell RNA-seq profiling.
    Chen HI; Jin Y; Huang Y; Chen Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. rSeqNP: a non-parametric approach for detecting differential expression and splicing from RNA-Seq data.
    Shi Y; Chinnaiyan AM; Jiang H
    Bioinformatics; 2015 Jul; 31(13):2222-4. PubMed ID: 25717189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LFCseq: a nonparametric approach for differential expression analysis of RNA-seq data.
    Lin B; Zhang LF; Chen X
    BMC Genomics; 2014; 15 Suppl 10(Suppl 10):S7. PubMed ID: 25560842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Silico HLA Typing Using Standard RNA-Seq Sequence Reads.
    Boegel S; Scholtalbers J; Löwer M; Sahin U; Castle JC
    Methods Mol Biol; 2015; 1310():247-58. PubMed ID: 26024640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NPEBseq: nonparametric empirical bayesian-based procedure for differential expression analysis of RNA-seq data.
    Bi Y; Davuluri RV
    BMC Bioinformatics; 2013 Aug; 14():262. PubMed ID: 23981227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathway analysis for RNA-Seq data using a score-based approach.
    Zhou YH
    Biometrics; 2016 Mar; 72(1):165-74. PubMed ID: 26259845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyester: simulating RNA-seq datasets with differential transcript expression.
    Frazee AC; Jaffe AE; Langmead B; Leek JT
    Bioinformatics; 2015 Sep; 31(17):2778-84. PubMed ID: 25926345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA-Seq methods for transcriptome analysis.
    Hrdlickova R; Toloue M; Tian B
    Wiley Interdiscip Rev RNA; 2017 Jan; 8(1):. PubMed ID: 27198714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DAFS: a data-adaptive flag method for RNA-sequencing data to differentiate genes with low and high expression.
    George NI; Chang CW
    BMC Bioinformatics; 2014 Mar; 15():92. PubMed ID: 24685233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LPEseq: Local-Pooled-Error Test for RNA Sequencing Experiments with a Small Number of Replicates.
    Gim J; Won S; Park T
    PLoS One; 2016; 11(8):e0159182. PubMed ID: 27532300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bias and Correction in RNA-seq Data for Marine Species.
    Song K; Li L; Zhang G
    Mar Biotechnol (NY); 2017 Oct; 19(5):541-550. PubMed ID: 28884399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bias, robustness and scalability in single-cell differential expression analysis.
    Soneson C; Robinson MD
    Nat Methods; 2018 Apr; 15(4):255-261. PubMed ID: 29481549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Length bias correction for RNA-seq data in gene set analyses.
    Gao L; Fang Z; Zhang K; Zhi D; Cui X
    Bioinformatics; 2011 Mar; 27(5):662-9. PubMed ID: 21252076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.