These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Synthetic data sets for the identification of key ingredients for RNA-seq differential analysis. Rigaill G; Balzergue S; Brunaud V; Blondet E; Rau A; Rogier O; Caius J; Maugis-Rabusseau C; Soubigou-Taconnat L; Aubourg S; Lurin C; Martin-Magniette ML; Delannoy E Brief Bioinform; 2018 Jan; 19(1):65-76. PubMed ID: 27742662 [TBL] [Abstract][Full Text] [Related]
5. Statistical detection of differentially expressed genes based on RNA-seq: from biological to phylogenetic replicates. Gu X Brief Bioinform; 2016 Mar; 17(2):243-8. PubMed ID: 26108230 [TBL] [Abstract][Full Text] [Related]
6. Detecting Multivariate Gene Interactions in RNA-Seq Data Using Optimal Bayesian Classification. Knight JM; Ivanov I; Triff K; Chapkin RS; Dougherty ER IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(2):484-493. PubMed ID: 26441451 [TBL] [Abstract][Full Text] [Related]
7. ToPASeq: an R package for topology-based pathway analysis of microarray and RNA-Seq data. Ihnatova I; Budinska E BMC Bioinformatics; 2015 Oct; 16():350. PubMed ID: 26514335 [TBL] [Abstract][Full Text] [Related]
8. Detection of high variability in gene expression from single-cell RNA-seq profiling. Chen HI; Jin Y; Huang Y; Chen Y BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924 [TBL] [Abstract][Full Text] [Related]
9. rSeqNP: a non-parametric approach for detecting differential expression and splicing from RNA-Seq data. Shi Y; Chinnaiyan AM; Jiang H Bioinformatics; 2015 Jul; 31(13):2222-4. PubMed ID: 25717189 [TBL] [Abstract][Full Text] [Related]
10. LFCseq: a nonparametric approach for differential expression analysis of RNA-seq data. Lin B; Zhang LF; Chen X BMC Genomics; 2014; 15 Suppl 10(Suppl 10):S7. PubMed ID: 25560842 [TBL] [Abstract][Full Text] [Related]
11. In Silico HLA Typing Using Standard RNA-Seq Sequence Reads. Boegel S; Scholtalbers J; Löwer M; Sahin U; Castle JC Methods Mol Biol; 2015; 1310():247-58. PubMed ID: 26024640 [TBL] [Abstract][Full Text] [Related]
12. NPEBseq: nonparametric empirical bayesian-based procedure for differential expression analysis of RNA-seq data. Bi Y; Davuluri RV BMC Bioinformatics; 2013 Aug; 14():262. PubMed ID: 23981227 [TBL] [Abstract][Full Text] [Related]
13. Pathway analysis for RNA-Seq data using a score-based approach. Zhou YH Biometrics; 2016 Mar; 72(1):165-74. PubMed ID: 26259845 [TBL] [Abstract][Full Text] [Related]
15. RNA-Seq methods for transcriptome analysis. Hrdlickova R; Toloue M; Tian B Wiley Interdiscip Rev RNA; 2017 Jan; 8(1):. PubMed ID: 27198714 [TBL] [Abstract][Full Text] [Related]
16. DAFS: a data-adaptive flag method for RNA-sequencing data to differentiate genes with low and high expression. George NI; Chang CW BMC Bioinformatics; 2014 Mar; 15():92. PubMed ID: 24685233 [TBL] [Abstract][Full Text] [Related]
17. LPEseq: Local-Pooled-Error Test for RNA Sequencing Experiments with a Small Number of Replicates. Gim J; Won S; Park T PLoS One; 2016; 11(8):e0159182. PubMed ID: 27532300 [TBL] [Abstract][Full Text] [Related]
18. Bias and Correction in RNA-seq Data for Marine Species. Song K; Li L; Zhang G Mar Biotechnol (NY); 2017 Oct; 19(5):541-550. PubMed ID: 28884399 [TBL] [Abstract][Full Text] [Related]