BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

571 related articles for article (PubMed ID: 25476413)

  • 21. A diffraction correction for storage and loss moduli imaging using radiation force based elastography.
    Budelli E; Brum J; Bernal M; Deffieux T; Tanter M; Lema P; Negreira C; Gennisson JL
    Phys Med Biol; 2017 Jan; 62(1):91-106. PubMed ID: 27973354
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shear wave elastography can assess the in-vivo nonlinear mechanical behavior of heel-pad.
    Chatzistergos PE; Behforootan S; Allan D; Naemi R; Chockalingam N
    J Biomech; 2018 Oct; 80():144-150. PubMed ID: 30241799
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Vivo Quantification of the Nonlinear Shear Modulus in Breast Lesions: Feasibility Study.
    Bernal M; Chamming's F; Couade M; Bercoff J; Tanter M; Gennisson JL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jan; 63(1):101-9. PubMed ID: 26625412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measurement of the hyperelastic properties of 44 pathological ex vivo breast tissue samples.
    O'Hagan JJ; Samani A
    Phys Med Biol; 2009 Apr; 54(8):2557-69. PubMed ID: 19349660
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurement of the hyperelastic properties of ex vivo brain tissue slices.
    Kaster T; Sack I; Samani A
    J Biomech; 2011 Apr; 44(6):1158-63. PubMed ID: 21329927
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification process based on shear wave propagation within a phantom using finite element modelling and magnetic resonance elastography.
    Leclerc GE; Charleux F; Ho Ba Tho MC; Bensamoun SF
    Comput Methods Biomech Biomed Engin; 2015; 18(5):485-91. PubMed ID: 23947476
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An automatic differentiation-based gradient method for inversion of the shear wave equation in magnetic resonance elastography: specific application in fibrous soft tissues.
    Chatelin S; Charpentier I; Corbin N; Meylheuc L; Vappou J
    Phys Med Biol; 2016 Jul; 61(13):5000-19. PubMed ID: 27300107
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative viscoelastic parameters measured by harmonic motion imaging.
    Vappou J; Maleke C; Konofagou EE
    Phys Med Biol; 2009 Jun; 54(11):3579-94. PubMed ID: 19454785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurement and characterization of soft tissue behavior with surface deformation and force response under large deformations.
    Ahn B; Kim J
    Med Image Anal; 2010 Apr; 14(2):138-48. PubMed ID: 19948423
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Method for characterizing viscoelasticity of human gluteal tissue.
    Then C; Vogl TJ; Silber G
    J Biomech; 2012 Apr; 45(7):1252-8. PubMed ID: 22360834
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spherical indentation method for determining the constitutive parameters of hyperelastic soft materials.
    Zhang MG; Cao YP; Li GY; Feng XQ
    Biomech Model Mechanobiol; 2014 Jan; 13(1):1-11. PubMed ID: 23483348
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analyzing acoustoelastic effect of shear wave elastography data for perfused and hydrated soft tissues using a macromolecular network inspired model.
    Rosen D; Jiang J
    J Biomech; 2019 Dec; 97():109370. PubMed ID: 31606128
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Material characterization of in vivo and in vitro porcine brain using shear wave elasticity.
    Urbanczyk CA; Palmeri ML; Bass CR
    Ultrasound Med Biol; 2015 Mar; 41(3):713-23. PubMed ID: 25683220
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the effects of reflected waves in transient shear wave elastography.
    Deffieux T; Gennisson JL; Bercoff J; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2032-5. PubMed ID: 21989866
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determining the in vivo elastic properties of dermis layer of human skin using the supersonic shear imaging technique and inverse analysis.
    Luo CC; Qian LX; Li GY; Jiang Y; Liang S; Cao Y
    Med Phys; 2015 Jul; 42(7):4106-15. PubMed ID: 26133611
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Inverse Method to Determine Arterial Stiffness with Guided Axial Waves.
    Li GY; He Q; Jia L; He P; Luo J; Cao Y
    Ultrasound Med Biol; 2017 Feb; 43(2):505-516. PubMed ID: 27908486
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of the Effect of Tissue Compression on the Results of Shear Wave Elastography Measurements.
    Vachutka J; Sedlackova Z; Furst T; Herman M; Herman J; Salzman R; Dolezal L
    Ultrason Imaging; 2018 Nov; 40(6):380-393. PubMed ID: 30101677
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Building an open-source simulation platform of acoustic radiation force-based breast elastography.
    Wang Y; Peng B; Jiang J
    Phys Med Biol; 2017 Mar; 62(5):1949-1968. PubMed ID: 28075330
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rescaled Local Interaction Simulation Approach for Shear Wave Propagation Modelling in Magnetic Resonance Elastography.
    Hashemiyan Z; Packo P; Staszewski WJ; Uhl T
    Comput Math Methods Med; 2016; 2016():9343017. PubMed ID: 26884808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measured Hyperelastic Properties of Cervical Tissue with Shear-Wave Elastography.
    Ge W; Brooker G; Mogra R; Hyett J
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.