BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

756 related articles for article (PubMed ID: 25476501)

  • 41. Role of trunk muscles in generating follower load in the lumbar spine of neutral standing posture.
    Kim K; Kim YH
    J Biomech Eng; 2008 Aug; 130(4):041005. PubMed ID: 18601447
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of changes in the lumbar posture in lifting on trunk muscle and spinal loads: A combined in vivo, musculoskeletal, and finite element model study.
    Khoddam-Khorasani P; Arjmand N; Shirazi-Adl A
    J Biomech; 2020 May; 104():109728. PubMed ID: 32147242
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Trunk muscle forces and spinal loads during heavy deadlift: Effects of personalization, muscle wrapping, muscle lever arm, and lumbopelvic rhythm.
    Ramirez V; Ghezelbash F; Shirazi-Adl A; Bazrgari B
    Int J Numer Method Biomed Eng; 2023 Apr; 39(4):e3680. PubMed ID: 36606738
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of personalized spinal profile on its biomechanical response in an EMG-assisted optimization musculoskeletal model of the trunk.
    Larivière C; Eskandari AH; Mecheri H; Ghezelbash F; Gagnon D; Shirazi-Adl A
    J Biomech; 2024 Jan; 162():111867. PubMed ID: 37992597
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Seated whole body vibrations with high-magnitude accelerations--relative roles of inertia and muscle forces.
    Bazrgari B; Shirazi-Adl A; Kasra M
    J Biomech; 2008 Aug; 41(12):2639-46. PubMed ID: 18672242
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Model and in vivo studies on human trunk load partitioning and stability in isometric forward flexions.
    Arjmand N; Shirazi-Adl A
    J Biomech; 2006; 39(3):510-21. PubMed ID: 16389091
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hypersensitivity of trunk biomechanical model predictions to errors in image-based kinematics when using fully displacement-control techniques.
    Eskandari AH; Arjmand N; Shirazi-Adl A; Farahmand F
    J Biomech; 2019 Feb; 84():161-171. PubMed ID: 30638978
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sudden and unexpected loading generates high forces on the lumbar spine.
    Mannion AF; Adams MA; Dolan P
    Spine (Phila Pa 1976); 2000 Apr; 25(7):842-52. PubMed ID: 10751296
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Subject-specific 2D/3D image registration and kinematics-driven musculoskeletal model of the spine.
    Eskandari AH; Arjmand N; Shirazi-Adl A; Farahmand F
    J Biomech; 2017 May; 57():18-26. PubMed ID: 28365064
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In vivo implant forces acting on a vertebral body replacement during upper body flexion.
    Dreischarf M; Albiol L; Zander T; Arshad R; Graichen F; Bergmann G; Schmidt H; Rohlmann A
    J Biomech; 2015 Feb; 48(4):560-565. PubMed ID: 25640900
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The assessment of material handling strategies in dealing with sudden loading: the effects of load handling position on trunk biomechanics.
    Ning X; Zhou J; Dai B; Jaridi M
    Appl Ergon; 2014 Nov; 45(6):1399-405. PubMed ID: 24766903
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of vision and lumbar posture on trunk neuromuscular control.
    Maaswinkel E; van Drunen P; Veeger DJ; van Dieën JH
    J Biomech; 2015 Jan; 48(2):298-303. PubMed ID: 25498916
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An EMG-assisted modeling approach to assess passive lumbar tissue loading in vivo during trunk bending.
    Ning X
    J Electromyogr Kinesiol; 2017 Oct; 36():1-7. PubMed ID: 28633066
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spinal stability and role of passive stiffness in dynamic squat and stoop lifts.
    Bazrgari B; Shirazi-Adl A
    Comput Methods Biomech Biomed Engin; 2007 Oct; 10(5):351-60. PubMed ID: 17852177
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of trunk muscle forces, spinal loads and stability estimated by one stability- and three EMG-assisted optimization approaches.
    Mohammadi Y; Arjmand N; Shirazi-Adl A
    Med Eng Phys; 2015 Aug; 37(8):792-800. PubMed ID: 26117333
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Changes of lumbar posture and tissue loading during static trunk bending.
    Alessa F; Ning X
    Hum Mov Sci; 2018 Feb; 57():59-68. PubMed ID: 29161614
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of muscle dysfunction on lumbar spine mechanics. A finite element study based on a two motion segments model.
    Kong WZ; Goel VK; Gilbertson LG; Weinstein JN
    Spine (Phila Pa 1976); 1996 Oct; 21(19):2197-206; discussion 2206-7. PubMed ID: 8902963
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of a lifting belt on spine moments and muscle recruitments after unexpected sudden loading.
    Lavender SA; Shakeel K; Andersson GB; Thomas JS
    Spine (Phila Pa 1976); 2000 Jun; 25(12):1569-78. PubMed ID: 10851108
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A model-based approach for estimation of changes in lumbar segmental kinematics associated with alterations in trunk muscle forces.
    Shojaei I; Arjmand N; Meakin JR; Bazrgari B
    J Biomech; 2018 Mar; 70():82-87. PubMed ID: 29029957
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data.
    Rohlmann A; Bauer L; Zander T; Bergmann G; Wilke HJ
    J Biomech; 2006; 39(6):981-9. PubMed ID: 16549091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.