These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 25476580)

  • 1. Systematic analysis of the in situ crosstalk of tyrosine modifications reveals no additional natural selection on multiply modified residues.
    Pan Z; Liu Z; Cheng H; Wang Y; Gao T; Ullah S; Ren J; Xue Y
    Sci Rep; 2014 Dec; 4():7331. PubMed ID: 25476580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rampant purifying selection conserves positions with posttranslational modifications in human proteins.
    Gray VE; Kumar S
    Mol Biol Evol; 2011 May; 28(5):1565-8. PubMed ID: 21273632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-Specific Systematic Analysis of Lysine Modification Crosstalk.
    Xu HD; Wang LN; Wen PP; Shi SP; Qiu JD
    Proteomics; 2018 May; 18(9):e1700292. PubMed ID: 29520963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary constraint and disease associations of post-translational modification sites in human genomes.
    Reimand J; Wagih O; Bader GD
    PLoS Genet; 2015 Jan; 11(1):e1004919. PubMed ID: 25611800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic Analysis and Prediction of In Situ Cross Talk of O-GlcNAcylation and Phosphorylation.
    Yao H; Li A; Wang M
    Biomed Res Int; 2015; 2015():279823. PubMed ID: 26601103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Prediction and Analysis for Tyrosine Post-Translational Modifications via Elastic Net.
    Cao M; Chen G; Wang L; Wen P; Shi S
    J Chem Inf Model; 2018 Jun; 58(6):1272-1281. PubMed ID: 29775287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The next level of complexity: crosstalk of posttranslational modifications.
    Venne AS; Kollipara L; Zahedi RP
    Proteomics; 2014 Mar; 14(4-5):513-24. PubMed ID: 24339426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Multifeatures Fusion and Discrete Firefly Optimization Method for Prediction of Protein Tyrosine Sulfation Residues.
    Guo S; Liu C; Zhou P; Li Y
    Biomed Res Int; 2016; 2016():8151509. PubMed ID: 27034949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of sequence requirements for protein tyrosine sulfation.
    Rosenquist GL; Nicholas HB
    Protein Sci; 1993 Feb; 2(2):215-22. PubMed ID: 8443599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signatures of natural selection on mutations of residues with multiple posttranslational modifications.
    Gray VE; Liu L; Nirankari R; Hornbeck PV; Kumar S
    Mol Biol Evol; 2014 Jul; 31(7):1641-5. PubMed ID: 24739307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards understanding the crosstalk between protein post-translational modifications: Homo- and heterotypic PTM pair distances on protein surfaces are not random.
    Korkuć P; Walther D
    Proteins; 2017 Jan; 85(1):78-92. PubMed ID: 27802577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of enriched PTM crosstalk motifs from large-scale experimental data sets.
    Peng M; Scholten A; Heck AJ; van Breukelen B
    J Proteome Res; 2014 Jan; 13(1):249-59. PubMed ID: 24087892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-translational Modification Crosstalk and Hotspots in Sirtuin Interactors Implicated in Cardiovascular Diseases.
    Aggarwal S; Banerjee SK; Talukdar NC; Yadav AK
    Front Genet; 2020; 11():356. PubMed ID: 32425973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PTMscape: an open source tool to predict generic post-translational modifications and map modification crosstalk in protein domains and biological processes.
    Li GXH; Vogel C; Choi H
    Mol Omics; 2018 Jun; 14(3):197-209. PubMed ID: 29876573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteome-Level Analysis Indicates Global Mechanisms for Post-Translational Regulation of RRM Domains.
    Sloutsky R; Naegle KM
    J Mol Biol; 2018 Jan; 430(1):41-44. PubMed ID: 29146174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling the human nitroproteome: Protein tyrosine nitration in cell signaling and cancer.
    Griswold-Prenner I; Kashyap AK; Mazhar S; Hall ZW; Fazelinia H; Ischiropoulos H
    J Biol Chem; 2023 Aug; 299(8):105038. PubMed ID: 37442231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crosstalk of intracellular post-translational modifications in cancer.
    Wu Z; Huang R; Yuan L
    Arch Biochem Biophys; 2019 Nov; 676():108138. PubMed ID: 31606391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-silico analysis of claudin-5 reveals novel putative sites for post-translational modifications: Insights into potential molecular determinants of blood-brain barrier breach during HIV-1 infiltration.
    Awan FM; Anjum S; Obaid A; Ali A; Paracha RZ; Janjua HA
    Infect Genet Evol; 2014 Oct; 27():355-65. PubMed ID: 25120100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tools for protein posttranslational modifications analysis: FAK, a case study.
    Fonseca C; Voabil P; Carvalho AS; Matthiesen R
    Methods Mol Biol; 2013; 1007():335-58. PubMed ID: 23666734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the sites of tyrosine O-sulfation in peptides and proteins.
    Yu Y; Hoffhines AJ; Moore KL; Leary JA
    Nat Methods; 2007 Jul; 4(7):583-8. PubMed ID: 17558413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.