These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
484 related articles for article (PubMed ID: 25476704)
21. Analysis of Colubroidea snake venoms by liquid chromatography with mass spectrometry: evolutionary and toxinological implications. Fry BG; Wüster W; Ryan Ramjan SF; Jackson T; Martelli P; Kini RM Rapid Commun Mass Spectrom; 2003; 17(18):2047-62. PubMed ID: 12955733 [TBL] [Abstract][Full Text] [Related]
22. Evolution of an arsenal: structural and functional diversification of the venom system in the advanced snakes (Caenophidia). Fry BG; Scheib H; van der Weerd L; Young B; McNaughtan J; Ramjan SF; Vidal N; Poelmann RE; Norman JA Mol Cell Proteomics; 2008 Feb; 7(2):215-46. PubMed ID: 17855442 [TBL] [Abstract][Full Text] [Related]
23. Identification and characterization of a taxon-specific three-finger toxin from the venom of the Green Vinesnake (Oxybelis fulgidus; family Colubridae). Heyborne WH; Mackessy SP Biochimie; 2013 Oct; 95(10):1923-32. PubMed ID: 23851011 [TBL] [Abstract][Full Text] [Related]
24. Independent Recruitment of Different Types of Phospholipases A2 to the Venoms of Caenophidian Snakes: The Rise of PLA2-IIE within Pseudoboini (Dipsadidae). Bayona-Serrano JD; Grazziotin FG; Salazar-Valenzuela D; Valente RH; Nachtigall PG; Colombini M; Moura-da-Silva A; Junqueira-de-Azevedo ILM Mol Biol Evol; 2023 Jul; 40(7):. PubMed ID: 37352150 [TBL] [Abstract][Full Text] [Related]
25. Venomics of the Central American Lyre Snake Trimorphodon quadruplex (Colubridae: Smith, 1941) from Costa Rica. Mackessy SP; Bryan W; Smith CF; Lopez K; Fernández J; Bonilla F; Camacho E; Sasa M; Lomonte B J Proteomics; 2020 May; 220():103778. PubMed ID: 32259605 [TBL] [Abstract][Full Text] [Related]
26. A comparative study of the effects of venoms from five rear-fanged snake species on the growth of Leishmania major: identification of a protein with inhibitory activity against the parasite. Peichoto ME; Tavares FL; Dekrey G; Mackessy SP Toxicon; 2011 Jul; 58(1):28-34. PubMed ID: 21601589 [TBL] [Abstract][Full Text] [Related]
27. Some aspects of the venom proteome of the Colubridae snake Philodryas olfersii revealed from a Duvernoy's (venom) gland transcriptome. Ching AT; Rocha MM; Paes Leme AF; Pimenta DC; de Fátima D Furtado M; Serrano SM; Ho PL; Junqueira-de-Azevedo IL FEBS Lett; 2006 Aug; 580(18):4417-22. PubMed ID: 16857193 [TBL] [Abstract][Full Text] [Related]
28. Trends in the Evolution of Snake Toxins Underscored by an Integrative Omics Approach to Profile the Venom of the Colubrid Phalotris mertensi. Campos PF; Andrade-Silva D; Zelanis A; Paes Leme AF; Rocha MM; Menezes MC; Serrano SM; Junqueira-de-Azevedo Ide L Genome Biol Evol; 2016 Aug; 8(8):2266-87. PubMed ID: 27412610 [TBL] [Abstract][Full Text] [Related]
29. Venoms of New World Vinesnakes (Oxybelis aeneus and O. fulgidus). Heyborne WH; Mackessy SP Toxicon; 2021 Jan; 190():22-30. PubMed ID: 33307109 [TBL] [Abstract][Full Text] [Related]
30. Identification and molecular characterization of five putative toxins from the venom gland of the snake Philodryas chamissonis (Serpentes: Dipsadidae). Urra FA; Pulgar R; Gutiérrez R; Hodar C; Cambiazo V; Labra A Toxicon; 2015 Dec; 108():19-31. PubMed ID: 26410112 [TBL] [Abstract][Full Text] [Related]
31. Assessment of the potential toxicological hazard of the Green Parrot Snake (Leptophis ahaetulla marginatus): Characterization of its venom and venom-delivery system. Sánchez MN; Teibler GP; López CA; Mackessy SP; Peichoto ME Toxicon; 2018 Jun; 148():202-212. PubMed ID: 29705149 [TBL] [Abstract][Full Text] [Related]
32. A survey on some biochemical and pharmacological activities of venom from two Colombian colubrid snakes, Erythrolamprus bizona (Double-banded coral snake mimic) and Pseudoboa neuwiedii (Neuwied's false boa). Torres-Bonilla KA; Floriano RS; Schezaro-Ramos R; Rodrigues-Simioni L; da Cruz-Höfling MA Toxicon; 2017 Jun; 131():29-36. PubMed ID: 28284847 [TBL] [Abstract][Full Text] [Related]
33. Venomous snakes of Costa Rica: biological and medical implications of their venom proteomic profiles analyzed through the strategy of snake venomics. Lomonte B; Fernández J; Sanz L; Angulo Y; Sasa M; Gutiérrez JM; Calvete JJ J Proteomics; 2014 Jun; 105():323-39. PubMed ID: 24576642 [TBL] [Abstract][Full Text] [Related]
34. The Venom Composition of the Snake Tribe Philodryadini: 'Omic' Techniques Reveal Intergeneric Variability among South American Racers. Tioyama EC; Bayona-Serrano JD; Portes-Junior JA; Nachtigall PG; de Souza VC; Beraldo-Neto E; Grazziotin FG; Junqueira-de-Azevedo ILM; Moura-da-Silva AM; Freitas-de-Sousa LA Toxins (Basel); 2023 Jun; 15(7):. PubMed ID: 37505684 [TBL] [Abstract][Full Text] [Related]
37. What makes a fang? Phylogenetic and ecological controls on tooth evolution in rear-fanged snakes. Westeen EP; Durso AM; Grundler MC; Rabosky DL; Davis Rabosky AR BMC Evol Biol; 2020 Jul; 20(1):80. PubMed ID: 32646372 [TBL] [Abstract][Full Text] [Related]
38. Snake venoms are integrated systems, but abundant venom proteins evolve more rapidly. Aird SD; Aggarwal S; Villar-Briones A; Tin MM; Terada K; Mikheyev AS BMC Genomics; 2015 Aug; 16():647. PubMed ID: 26315097 [TBL] [Abstract][Full Text] [Related]