These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 25476819)
1. Adsorption of the anionic surfactant sodium dodecyl sulfate on a C18 column under micellar and high submicellar conditions in reversed-phase liquid chromatography. Ortiz-Bolsico C; Ruiz-Angel MJ; García-Alvarez-Coque MC J Sep Sci; 2015 Feb; 38(4):550-5. PubMed ID: 25476819 [TBL] [Abstract][Full Text] [Related]
2. Retention mechanisms for basic drugs in the submicellar and micellar reversed-phase liquid chromatographic modes. Ruiz-Angel MJ; Torres-Lapasió JR; García-Alvarez-Coque MC; Carda-Broch S Anal Chem; 2008 Dec; 80(24):9705-13. PubMed ID: 19072272 [TBL] [Abstract][Full Text] [Related]
3. Chromatographic behaviour in reversed-phase high-performance liquid chromatography with micellar and submicellar mobile phases: effects of the organic modifier. Fischer J; Jandera P J Chromatogr B Biomed Appl; 1996 May; 681(1):3-19. PubMed ID: 8798907 [TBL] [Abstract][Full Text] [Related]
4. Performance of different C18 columns in reversed-phase liquid chromatography with hydro-organic and micellar-organic mobile phases. Ruiz-Angel MJ; Pous-Torres S; Carda-Broch S; García-Alvarez-Coque MC J Chromatogr A; 2014 May; 1344():76-82. PubMed ID: 24767835 [TBL] [Abstract][Full Text] [Related]
5. Submicellar and micellar reversed-phase liquid chromatographic modes applied to the separation of beta-blockers. Ruiz-Angel MJ; Torres-Lapasió JR; García-Alvarez-Coque MC; Carda-Broch S J Chromatogr A; 2009 Apr; 1216(15):3199-209. PubMed ID: 19249054 [TBL] [Abstract][Full Text] [Related]
6. Effect of short-chain alcohols on surfactant-mediated reversed-phase liquid chromatographic systems. Ruiz-Ángel MJ; Carda-Broch S; García-Álvarez-Coque MC J Chromatogr A; 2010 Nov; 1217(45):7082-9. PubMed ID: 20932525 [TBL] [Abstract][Full Text] [Related]
7. Interpretive search of optimal isocratic and gradient separations in micellar liquid chromatography in extended organic solvent domains. Navarro-Huerta JA; Vargas-García AG; Torres-Lapasió JR; García-Alvarez-Coque MC J Chromatogr A; 2020 Apr; 1616():460784. PubMed ID: 31864726 [TBL] [Abstract][Full Text] [Related]
8. Peak half-width plots to study the effect of organic solvents on the peak performance of basic drugs in micellar liquid chromatography. Ruiz-Angel MJ; Carda-Broch S; García-Alvarez-Coque MC J Chromatogr A; 2010 Mar; 1217(11):1786-98. PubMed ID: 20132939 [TBL] [Abstract][Full Text] [Related]
9. Comparison of surfactant-mediated liquid chromatographic modes with sodium dodecyl sulphate for the analysis of basic drugs. Pankajkumar-Patel N; Peris-García E; Ruiz-Angel MJ; García-Alvarez-Coque MC Anal Methods; 2020 May; 12(19):2443-2452. PubMed ID: 32930233 [TBL] [Abstract][Full Text] [Related]
10. Performance of short-chain alcohols versus acetonitrile in the surfactant-mediated reversed-phase liquid chromatographic separation of β-blockers. Ruiz-Ángel MJ; Torres-Lapasió JR; Carda-Broch S; García-Álvarez-Coque MC J Chromatogr A; 2010 Nov; 1217(45):7090-9. PubMed ID: 20934180 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the performance of non-ionic and anionic surfactants as mobile phase additives in the RPLC analysis of basic drugs. Ruiz-Ángel MJ; García-Álvarez-Coque MC J Sep Sci; 2011 Mar; 34(6):623-30. PubMed ID: 21328695 [TBL] [Abstract][Full Text] [Related]
12. Improved efficiency in micellar liquid chromatography using triethylamine and 1-butanol as mobile phase additives to reduce surfactant adsorption. Thomas DP; Foley JP J Chromatogr A; 2008 Sep; 1205(1-2):36-45. PubMed ID: 18721924 [TBL] [Abstract][Full Text] [Related]
13. Prediction of peak shape in hydro-organic and micellar-organic liquid chromatography as a function of mobile phase composition. Baeza-Baeza JJ; Ruiz-Angel MJ; García-Alvarez-Coque MC J Chromatogr A; 2007 Sep; 1163(1-2):119-27. PubMed ID: 17612547 [TBL] [Abstract][Full Text] [Related]
15. Use of cholate derivatives with submicellar concentration for controlling selectivity of proteins in hydrophobic interaction chromatography. Tani H; Matsubara T; Kamidate T J Chromatogr A; 2003 Oct; 1016(1):51-60. PubMed ID: 14601827 [TBL] [Abstract][Full Text] [Related]
16. Isocratic and gradient elution in micellar liquid chromatography with Brij-35. Peris-García E; Ortiz-Bolsico C; Baeza-Baeza JJ; García-Alvarez-Coque MC J Sep Sci; 2015 Jun; 38(12):2059-67. PubMed ID: 25866292 [TBL] [Abstract][Full Text] [Related]
17. Efficiency enhancements in micellar liquid chromatography through selection of stationary phase and alcohol modifier. Thomas DP; Foley JP J Chromatogr A; 2007 May; 1149(2):282-93. PubMed ID: 17418227 [TBL] [Abstract][Full Text] [Related]
18. Retention mechanism and implications for selectivity for a group of dihydropyridines in ionic micellar liquid chromatography. Saz JM; Marina ML J Chromatogr A; 1994 Dec; 687(1):1-12. PubMed ID: 7849985 [TBL] [Abstract][Full Text] [Related]
19. Aqueous liquid chromatography with mobile phases of sodium dodecyl sulphate and ionic liquid. Tereba-Mamani CJ; Janczuk MA; Ruiz-Angel MJ; García-Alvarez-Coque MC J Chromatogr A; 2023 Jan; 1689():463740. PubMed ID: 36580766 [TBL] [Abstract][Full Text] [Related]
20. The role of the dual nature of ionic liquids in the reversed-phase liquid chromatographic separation of basic drugs. Fernández-Navarro JJ; García-Álvarez-Coque MC; Ruiz-Ángel MJ J Chromatogr A; 2011 Jan; 1218(3):398-407. PubMed ID: 21176907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]