BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

495 related articles for article (PubMed ID: 25476858)

  • 1. Molybdenum and tungsten-dependent formate dehydrogenases.
    Maia LB; Moura JJ; Moura I
    J Biol Inorg Chem; 2015 Mar; 20(2):287-309. PubMed ID: 25476858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reductive activation of CO
    Niks D; Hille R
    Methods Enzymol; 2018; 613():277-295. PubMed ID: 30509470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct electrochemical reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase.
    Cordas CM; Campaniço M; Baptista R; Maia LB; Moura I; Moura JJG
    J Inorg Biochem; 2019 Jul; 196():110694. PubMed ID: 31005821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formate Dehydrogenase Mimics as Catalysts for Carbon Dioxide Reduction.
    Fogeron T; Li Y; Fontecave M
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of either molybdenum or tungsten into formate dehydrogenase from Desulfovibrio alaskensis NCIMB 13491; EPR assignment of the proximal iron-sulfur cluster to the pterin cofactor in formate dehydrogenases from sulfate-reducing bacteria.
    Brondino CD; Passeggi MC; Caldeira J; Almendra MJ; Feio MJ; Moura JJ; Moura I
    J Biol Inorg Chem; 2004 Mar; 9(2):145-51. PubMed ID: 14669076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molybdenum- and tungsten-containing formate dehydrogenases and formylmethanofuran dehydrogenases: Structure, mechanism, and cofactor insertion.
    Niks D; Hille R
    Protein Sci; 2019 Jan; 28(1):111-122. PubMed ID: 30120799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism of formate oxidation by metal-dependent formate dehydrogenases.
    Mota CS; Rivas MG; Brondino CD; Moura I; Moura JJ; González PJ; Cerqueira NM
    J Biol Inorg Chem; 2011 Dec; 16(8):1255-68. PubMed ID: 21773834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corynebacterium glutamicum harbours a molybdenum cofactor-dependent formate dehydrogenase which alleviates growth inhibition in the presence of formate.
    Witthoff S; Eggeling L; Bott M; Polen T
    Microbiology (Reading); 2012 Sep; 158(Pt 9):2428-2439. PubMed ID: 22767548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions.
    Hartmann T; Schrapers P; Utesch T; Nimtz M; Rippers Y; Dau H; Mroginski MA; Haumann M; Leimkühler S
    Biochemistry; 2016 Apr; 55(16):2381-9. PubMed ID: 27054466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological and biochemical characterization of the soluble formate dehydrogenase, a molybdoenzyme from Alcaligenes eutrophus.
    Friedebold J; Bowien B
    J Bacteriol; 1993 Aug; 175(15):4719-28. PubMed ID: 8335630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly and catalysis of molybdenum or tungsten-containing formate dehydrogenases from bacteria.
    Hartmann T; Schwanhold N; Leimkühler S
    Biochim Biophys Acta; 2015 Sep; 1854(9):1090-100. PubMed ID: 25514355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation-State-Dependent Binding Properties of the Active Site in a Mo-Containing Formate Dehydrogenase.
    Robinson WE; Bassegoda A; Reisner E; Hirst J
    J Am Chem Soc; 2017 Jul; 139(29):9927-9936. PubMed ID: 28635274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryo-EM structures reveal intricate Fe-S cluster arrangement and charging in Rhodobacter capsulatus formate dehydrogenase.
    Radon C; Mittelstädt G; Duffus BR; Bürger J; Hartmann T; Mielke T; Teutloff C; Leimkühler S; Wendler P
    Nat Commun; 2020 Apr; 11(1):1912. PubMed ID: 32313256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Mechanism of Metal-Containing Formate Dehydrogenases Revisited: The Formation of Bicarbonate as Product Intermediate Provides Evidence for an Oxygen Atom Transfer Mechanism.
    Kumar H; Khosraneh M; Bandaru SSM; Schulzke C; Leimkühler S
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two W-containing formate dehydrogenases (CO2-reductases) involved in syntrophic propionate oxidation by Syntrophobacter fumaroxidans.
    de Bok FA; Hagedoorn PL; Silva PJ; Hagen WR; Schiltz E; Fritsche K; Stams AJ
    Eur J Biochem; 2003 Jun; 270(11):2476-85. PubMed ID: 12755703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Function of formate dehydrogenases in Desulfovibrio vulgaris Hildenborough energy metabolism.
    da Silva SM; Voordouw J; Leitão C; Martins M; Voordouw G; Pereira IAC
    Microbiology (Reading); 2013 Aug; 159(Pt 8):1760-1769. PubMed ID: 23728629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcription of fdh and hyd in Syntrophobacter spp. and Methanospirillum spp. as a diagnostic tool for monitoring anaerobic sludge deprived of molybdenum, tungsten and selenium.
    Worm P; Fermoso FG; Stams AJ; Lens PN; Plugge CM
    Environ Microbiol; 2011 May; 13(5):1228-35. PubMed ID: 21332622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible interconversion of CO2 and formate by a molybdenum-containing formate dehydrogenase.
    Bassegoda A; Madden C; Wakerley DW; Reisner E; Hirst J
    J Am Chem Soc; 2014 Nov; 136(44):15473-6. PubMed ID: 25325406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate.
    Hartmann T; Leimkühler S
    FEBS J; 2013 Dec; 280(23):6083-96. PubMed ID: 24034888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient and Selective Electrochemically Driven Enzyme-Catalyzed Reduction of Carbon Dioxide to Formate using Formate Dehydrogenase and an Artificial Cofactor.
    Jayathilake BS; Bhattacharya S; Vaidehi N; Narayanan SR
    Acc Chem Res; 2019 Mar; 52(3):676-685. PubMed ID: 30741524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.