These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

497 related articles for article (PubMed ID: 25476858)

  • 41. Efficient CO2-reducing activity of NAD-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA for formate production from CO2 gas.
    Choe H; Joo JC; Cho DH; Kim MH; Lee SH; Jung KD; Kim YH
    PLoS One; 2014; 9(7):e103111. PubMed ID: 25061666
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural insights into the NAD
    Yilmazer B; Isupov MN; De Rose SA; Bulut H; Benninghoff JC; Binay B; Littlechild JA
    J Struct Biol; 2020 Dec; 212(3):107657. PubMed ID: 33148525
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Discovery of a new metal and NAD
    Çakar MM; Mangas-Sanchez J; Birmingham WR; Turner NJ; Binay B
    Prep Biochem Biotechnol; 2018 Apr; 48(4):327-334. PubMed ID: 29504829
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of tungsten and molybdenum on growth of a syntrophic coculture of Syntrophobacter fumaroxidans and Methanospirillum hungatei.
    Plugge CM; Jiang B; de Bok FA; Tsai C; Stams AJ
    Arch Microbiol; 2009 Jan; 191(1):55-61. PubMed ID: 18795263
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tungsten and molybdenum regulation of formate dehydrogenase expression in Desulfovibrio vulgaris Hildenborough.
    da Silva SM; Pimentel C; Valente FM; Rodrigues-Pousada C; Pereira IA
    J Bacteriol; 2011 Jun; 193(12):2909-16. PubMed ID: 21498650
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metal-Containing Formate Dehydrogenases, a Personal View.
    Leimkühler S
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513211
    [TBL] [Abstract][Full Text] [Related]  

  • 47. EPR characterization of the molybdenum(V) forms of formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774 upon formate reduction.
    Rivas MG; González PJ; Brondino CD; Moura JJ; Moura I
    J Inorg Biochem; 2007 Nov; 101(11-12):1617-22. PubMed ID: 17574676
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Formate production through biocatalysis.
    Alissandratos A; Kim HK; Easton CJ
    Bioengineered; 2013; 4(5):348-50. PubMed ID: 23841981
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enzymatic electrosynthesis of formate through CO2 sequestration/reduction in a bioelectrochemical system (BES).
    Srikanth S; Maesen M; Dominguez-Benetton X; Vanbroekhoven K; Pant D
    Bioresour Technol; 2014 Aug; 165():350-4. PubMed ID: 24565874
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Specific and sustainable bioelectro-reduction of carbon dioxide to formate on a novel enzymatic cathode.
    Zhang L; Liu J; Ong J; Li SF
    Chemosphere; 2016 Nov; 162():228-34. PubMed ID: 27501309
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Clostridium carboxidivorans strain P7T recombinant formate dehydrogenase catalyzes reduction of CO(2) to formate.
    Alissandratos A; Kim HK; Matthews H; Hennessy JE; Philbrook A; Easton CJ
    Appl Environ Microbiol; 2013 Jan; 79(2):741-4. PubMed ID: 23144135
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reaction mechanism of molybdoenzyme formate dehydrogenase.
    Leopoldini M; Chiodo SG; Toscano M; Russo N
    Chemistry; 2008; 14(28):8674-81. PubMed ID: 18671310
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases.
    Moura JJ; Brondino CD; Trincão J; Romão MJ
    J Biol Inorg Chem; 2004 Oct; 9(7):791-9. PubMed ID: 15311335
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molybdenum-containing membrane-bound formate dehydrogenase isolated from Citrobacter sp. S-77 having high stability against oxygen, pH, and temperature.
    Nguyen NT; Yatabe T; Yoon KS; Ogo S
    J Biosci Bioeng; 2014 Oct; 118(4):386-91. PubMed ID: 24751436
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molybdenum and tungsten in Campylobacter jejuni: their physiological role and identification of separate transporters regulated by a single ModE-like protein.
    Taveirne ME; Sikes ML; Olson JW
    Mol Microbiol; 2009 Nov; 74(3):758-71. PubMed ID: 19919002
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Construction of Functionally Compartmental Inorganic Photocatalyst-Enzyme System via Imitating Chloroplast for Efficient Photoreduction of CO
    Tian Y; Zhou Y; Zong Y; Li J; Yang N; Zhang M; Guo Z; Song H
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34795-34805. PubMed ID: 32805792
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evidence for the presence of a new NAD+-dependent formate dehydrogenase in Pseudomonas sp. 101 cells grown on a molybdenum-containing medium.
    Karzanov VV; Bogatsky YuA ; Tishkov VI; Egorov AM
    FEMS Microbiol Lett; 1989 Jul; 51(1):197-200. PubMed ID: 2777065
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reversible interconversion of carbon dioxide and formate by an electroactive enzyme.
    Reda T; Plugge CM; Abram NJ; Hirst J
    Proc Natl Acad Sci U S A; 2008 Aug; 105(31):10654-8. PubMed ID: 18667702
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficient Hydrogen-Dependent Carbon Dioxide Reduction by Escherichia coli.
    Roger M; Brown F; Gabrielli W; Sargent F
    Curr Biol; 2018 Jan; 28(1):140-145.e2. PubMed ID: 29290558
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of molybdenum and tungsten on synthesis and composition of formate dehydrogenase in Methanobacterium formicicum.
    May HD; Patel PS; Ferry JG
    J Bacteriol; 1988 Aug; 170(8):3384-9. PubMed ID: 2457011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.