These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 25476910)

  • 1. Understanding Networks of Computing Chemical Droplet Neurons Based on Information Flow.
    Gruenert G; Gizynski K; Escuela G; Ibrahim B; Gorecki J; Dittrich P
    Int J Neural Syst; 2015 Nov; 25(7):1450032. PubMed ID: 25476910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary Design of Classifiers Made of Droplets Containing a Nonlinear Chemical Medium.
    Gizynski K; Gruenert G; Dittrich P; Gorecki J
    Evol Comput; 2017; 25(4):643-671. PubMed ID: 27728772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical computing with reaction-diffusion processes.
    Gorecki J; Gizynski K; Guzowski J; Gorecka JN; Garstecki P; Gruenert G; Dittrich P
    Philos Trans A Math Phys Eng Sci; 2015 Jul; 373(2046):. PubMed ID: 26078345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical communication and dynamics of droplet emulsions in networks of Belousov-Zhabotinsky micro-oscillators produced by microfluidics.
    Torbensen K; Rossi F; Ristori S; Abou-Hassan A
    Lab Chip; 2017 Mar; 17(7):1179-1189. PubMed ID: 28239705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards Functional Droplet Architectures: a Belousov-Zhabotinsky Medium for Networks.
    Chang KM; de Planque MRR; Zauner KP
    Sci Rep; 2018 Aug; 8(1):12656. PubMed ID: 30140015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic platform for reproducible self-assembly of chemically communicating droplet networks with predesigned number and type of the communicating compartments.
    Guzowski J; Gizynski K; Gorecki J; Garstecki P
    Lab Chip; 2016 Feb; 16(4):764-72. PubMed ID: 26785761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of droplet traffic in interconnected microfluidic ladder devices.
    Song K; Zhang L; Hu G
    Electrophoresis; 2012 Feb; 33(3):411-8. PubMed ID: 22228275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters.
    Basu AS
    Lab Chip; 2013 May; 13(10):1892-901. PubMed ID: 23567746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards molecular computing: co-development of microfluidic devices and chemical reaction media.
    King PH; Corsi JC; Pan BH; Morgan H; de Planque MR; Zauner KP
    Biosystems; 2012 Jul; 109(1):18-23. PubMed ID: 22306034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards heterotic computing with droplets in a fully automated droplet-maker platform.
    Henson A; Gutierrez JM; Hinkley T; Tsuda S; Cronin L
    Philos Trans A Math Phys Eng Sci; 2015 Jul; 373(2046):. PubMed ID: 26078348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coding/decoding and reversibility of droplet trains in microfluidic networks.
    Fuerstman MJ; Garstecki P; Whitesides GM
    Science; 2007 Feb; 315(5813):828-32. PubMed ID: 17204610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering reaction-diffusion networks with properties of neural tissue.
    Litschel T; Norton MM; Tserunyan V; Fraden S
    Lab Chip; 2018 Feb; 18(5):714-722. PubMed ID: 29297916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cancer classification with a network of chemical oscillators.
    Gizynski K; Gorecki J
    Phys Chem Chem Phys; 2017 Nov; 19(42):28808-28819. PubMed ID: 29051945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using chemistry and microfluidics to understand the spatial dynamics of complex biological networks.
    Kastrup CJ; Runyon MK; Lucchetta EM; Price JM; Ismagilov RF
    Acc Chem Res; 2008 Apr; 41(4):549-58. PubMed ID: 18217723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of periodic delayed neural networks.
    Zhou J; Liu Z; Chen G
    Neural Netw; 2004 Jan; 17(1):87-101. PubMed ID: 14690710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Processing short-term and long-term information with a combination of polynomial approximation techniques and time-delay neural networks.
    Fuchs E; Gruber C; Reitmaier T; Sick B
    IEEE Trans Neural Netw; 2009 Sep; 20(9):1450-62. PubMed ID: 19628457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards computing with proteins.
    Unger R; Moult J
    Proteins; 2006 Apr; 63(1):53-64. PubMed ID: 16435369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time simulation of a spiking neural network model of the basal ganglia circuitry using general purpose computing on graphics processing units.
    Igarashi J; Shouno O; Fukai T; Tsujino H
    Neural Netw; 2011 Nov; 24(9):950-60. PubMed ID: 21764258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning active emulsion dynamics via surfactants and topology.
    Thutupalli S; Herminghaus S
    Eur Phys J E Soft Matter; 2013 Aug; 36(8):91. PubMed ID: 23989755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.