These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 25476956)

  • 1. Chelation technology: a promising green approach for resource management and waste minimization.
    Chauhan G; Pant KK; Nigam KD
    Environ Sci Process Impacts; 2015 Jan; 17(1):12-40. PubMed ID: 25476956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Greener approach for the extraction of copper metal from electronic waste.
    Jadhao P; Chauhan G; Pant KK; Nigam KD
    Waste Manag; 2016 Nov; 57():102-112. PubMed ID: 26597372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal removal from contaminated sludge for land application: a review.
    Babel S; del Mundo Dacera D
    Waste Manag; 2006; 26(9):988-1004. PubMed ID: 16298121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Globally sustainable manganese metal production and use.
    Hagelstein K
    J Environ Manage; 2009 Sep; 90(12):3736-40. PubMed ID: 19467569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media.
    Ullmann A; Brauner N; Vazana S; Katz Z; Goikhman R; Seemann B; Marom H; Gozin M
    J Hazard Mater; 2013 Sep; 260():676-88. PubMed ID: 23832060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review.
    Soares EV; Soares HM
    Environ Sci Pollut Res Int; 2012 May; 19(4):1066-83. PubMed ID: 22139299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metal stabilization in municipal solid waste incineration flyash using heavy metal chelating agents.
    Jianguo J; Jun W; Xin X; Wei W; Zhou D; Yan Z
    J Hazard Mater; 2004 Sep; 113(1-3):141-6. PubMed ID: 15363524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review.
    Sud D; Mahajan G; Kaur MP
    Bioresour Technol; 2008 Sep; 99(14):6017-27. PubMed ID: 18280151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The greener synthesis of nanoparticles.
    Kharissova OV; Dias HV; Kharisov BI; Pérez BO; Pérez VM
    Trends Biotechnol; 2013 Apr; 31(4):240-8. PubMed ID: 23434153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(ethylene glycol dimethacrylate-n-vinyl imidazole) beads for heavy metal removal.
    Kara A; Uzun L; Beşirli N; Denizli A
    J Hazard Mater; 2004 Jan; 106(2-3):93-9. PubMed ID: 15177097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green chemistry and the evolution of flow analysis. A review.
    Melchert WR; Reis BF; Rocha FR
    Anal Chim Acta; 2012 Feb; 714():8-19. PubMed ID: 22244133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy metal extraction from an artificially contaminated sandy soil under EDDS deficiency: significance of humic acid and chelant mixture.
    Yip TC; Yan DY; Yui MM; Tsang DC; Lo IM
    Chemosphere; 2010 Jun; 80(4):416-21. PubMed ID: 20427074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of chelating agents in the remediation of metal-contaminated soils: a review.
    Lestan D; Luo CL; Li XD
    Environ Pollut; 2008 May; 153(1):3-13. PubMed ID: 18155817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metal induced oxidative stress & its possible reversal by chelation therapy.
    Flora SJ; Mittal M; Mehta A
    Indian J Med Res; 2008 Oct; 128(4):501-23. PubMed ID: 19106443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental applications of chitosan and its derivatives.
    Yong SK; Shrivastava M; Srivastava P; Kunhikrishnan A; Bolan N
    Rev Environ Contam Toxicol; 2015; 233():1-43. PubMed ID: 25367132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants.
    Begum ZA; Rahman IM; Tate Y; Sawai H; Maki T; Hasegawa H
    Chemosphere; 2012 Jun; 87(10):1161-70. PubMed ID: 22391046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of toxic metal ions from washing effluent containing excess aminopolycarboxylate chelant in solution.
    Hasegawa H; Rahman IM; Nakano M; Begum ZA; Egawa Y; Maki T; Furusho Y; Mizutani S
    Water Res; 2011 Oct; 45(16):4844-54. PubMed ID: 21767860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metals extraction from contaminated soil: recovery of the flushing solution.
    Di Palma L; Ferrantelli P; Medici F
    J Environ Manage; 2005 Nov; 77(3):205-11. PubMed ID: 16048735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of spent catalyst from the nitrogenous fertilizer industry--a review of the available methods of regeneration, recovery and disposal.
    Singh B
    J Hazard Mater; 2009 Aug; 167(1-3):24-37. PubMed ID: 19286315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chelant extraction of heavy metals from contaminated soils using new selective EDTA derivatives.
    Zhang T; Liu JM; Huang XF; Xia B; Su CY; Luo GF; Xu YW; Wu YX; Mao ZW; Qiu RL
    J Hazard Mater; 2013 Nov; 262():464-71. PubMed ID: 24076482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.