These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25477029)

  • 1. Uptake of ferrocyanide in willow and poplar trees in a long term greenhouse experiment.
    Dimitrova T; Repmann F; Raab T; Freese D
    Ecotoxicology; 2015 Apr; 24(3):497-510. PubMed ID: 25477029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake of iron cyanide complexes into willow trees.
    Larsen M; Trapp S
    Environ Sci Technol; 2006 Mar; 40(6):1956-61. PubMed ID: 16570621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth, physiology, and phytoextraction potential of poplar and willow established in soils amended with heavy-metal contaminated, dredged river sediments.
    Pilipović A; Zalesny RS; Rončević S; Nikolić N; Orlović S; Beljin J; Katanić M
    J Environ Manage; 2019 Jun; 239():352-365. PubMed ID: 30921754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoextraction of risk elements by willow and poplar trees.
    Kacálková L; Tlustoš P; Száková J
    Int J Phytoremediation; 2015; 17(1-6):414-21. PubMed ID: 25495931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detoxification of ferrocyanide in asoil-plant system.
    Dimitrova T; Repmann F; Freese D
    J Environ Sci (China); 2019 Mar; 77():54-64. PubMed ID: 30573106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assimilation and physiological effects of ferrocyanide on weeping willows.
    Yu XZ; Gu JD; Li L
    Ecotoxicol Environ Saf; 2008 Nov; 71(3):609-15. PubMed ID: 18614232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. USE OF NATIVE PLANTS FOR REMEDIATION OF TRICHLOROETHYLENE: I. DECIDUOUS TREES.
    Strycharz S; Newman L
    Int J Phytoremediation; 2009 Feb; 11(2):150-170. PubMed ID: 28133997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of urban wastewater application on growth, biomass, nutrition, and heavy-metal accumulation of
    Salehi A; Zalesny RS; Calagari M
    Int J Phytoremediation; 2023; 25(10):1371-1383. PubMed ID: 36597801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytotoxicity of cyanide to weeping willow trees.
    Yu X; Trapp S; Zhou P
    Environ Sci Pollut Res Int; 2005; 12(2):109-13. PubMed ID: 15859117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation and distribution of trivalent chromium and effects on hybrid willow (Salix matsudana Koidz x alba L.) metabolism.
    Yu XZ; Gu JD
    Arch Environ Contam Toxicol; 2007 May; 52(4):503-11. PubMed ID: 17380236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential for phytoremediation of iron cyanide complex by willows.
    Yu XZ; Zhou PH; Yang YM
    Ecotoxicology; 2006 Jul; 15(5):461-7. PubMed ID: 16703454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal uptake and allocation in trees grown on contaminated land: implications for biomass production.
    Evangelou MW; Robinson BH; Günthardt-Goerg MS; Schulin R
    Int J Phytoremediation; 2013; 15(1):77-90. PubMed ID: 23487987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements.
    Zárubová P; Hejcman M; Vondráčková S; Mrnka L; Száková J; Tlustoš P
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18801-13. PubMed ID: 26201656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyanide removal by Chinese vegetation--quantification of the Michaelis-Menten kinetics.
    Yu X; Zhou P; Zhou X; Liu Y
    Environ Sci Pollut Res Int; 2005 Jul; 12(4):221-6. PubMed ID: 16137157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosynthesis and aboveground carbon allocation of two co-occurring poplar species in an urban brownfield.
    Radwanski D; Gallagher F; Vanderklein DW; Schäfer KVR
    Environ Pollut; 2017 Apr; 223():497-506. PubMed ID: 28139323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genotypic variability and stability of poplars and willows grown onnitrate-contaminated soils.
    Zalesny RS; Bauer EO
    Int J Phytoremediation; 2019; 21(10):969-979. PubMed ID: 30907114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in uptake and translocation of hexavalent and trivalent chromium by two species of willows.
    Yu XZ; Gu JD; Xing LQ
    Ecotoxicology; 2008 Nov; 17(8):747-55. PubMed ID: 18470609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boron accumulation and toxicity in hybrid poplar (Populus nigra × euramericana).
    Rees R; Robinson BH; Menon M; Lehmann E; Günthardt-Goerg MS; Schulin R
    Environ Sci Technol; 2011 Dec; 45(24):10538-43. PubMed ID: 22050628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Test of aerobic TCE degradation by willows (Salix viminalis) and willows inoculated with TCE-cometabolizing strains of Burkholderia cepacia.
    Clausen LPW; Broholm MM; Gosewinkel U; Trapp S
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18320-18331. PubMed ID: 28639018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils.
    Ruttens A; Boulet J; Weyens N; Smeets K; Adriaensen K; Meers E; Van Slycken S; Tack F; Meiresonne L; Thewys T; Witters N; Carleer R; Dupae J; Vangronsveld J
    Int J Phytoremediation; 2011; 13 Suppl 1():194-207. PubMed ID: 22046760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.