BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 25477190)

  • 1. Unequal effect of ethanol-water on the stability of ct-DNA, poly[(dA-dT)]₂ and poly(rA)·poly(rU). Thermophysical properties.
    Ruiz R; Hoyuelos FJ; Navarro AM; Leal JM; García B
    Phys Chem Chem Phys; 2015 Jan; 17(3):2025-33. PubMed ID: 25477190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Counterion association with native and denatured nucleic acids: an experimental approach.
    Völker J; Klump HH; Manning GS; Breslauer KJ
    J Mol Biol; 2001 Jul; 310(5):1011-25. PubMed ID: 11501992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The hydration of nucleic acid duplexes as assessed by a combination of volumetric and structural techniques.
    Chalikian TV; Völker J; Srinivasan AR; Olson WK; Breslauer KJ
    Biopolymers; 1999 Oct; 50(5):459-71. PubMed ID: 10479730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of Mg2+ to single-stranded polynucleotides: hydration and optical studies.
    Kankia BI
    Biophys Chem; 2003 Jul; 104(3):643-54. PubMed ID: 12914910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of hydration, ion release, and excluded volume on the melting of triplex and duplex DNA.
    Spink CH; Chaires JB
    Biochemistry; 1999 Jan; 38(1):496-508. PubMed ID: 9890933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydration and conformational transitions in DNA, RNA, and mixed DNA-RNA triplexes studied by gravimetry and FTIR spectroscopy.
    Guzman MR; Liquier J; Taillandier E
    J Biomol Struct Dyn; 2005 Dec; 23(3):331-9. PubMed ID: 16218757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper insertion facilitates water-soluble porphyrin binding to rA.rU and rA.dT base pairs in duplex RNA and RNA.DNA hybrids.
    Uno T; Aoki K; Shikimi T; Hiranuma Y; Tomisugi Y; Ishikawa Y
    Biochemistry; 2002 Oct; 41(43):13059-66. PubMed ID: 12390034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational transitions of duplex and triplex nucleic acid helices: thermodynamic analysis of effects of salt concentration on stability using preferential interaction coefficients.
    Bond JP; Anderson CF; Record MT
    Biophys J; 1994 Aug; 67(2):825-36. PubMed ID: 7948695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection and characterization of triple-helical pyrimidine-purine-pyrimidine nucleic acids with vibrational circular dichroism.
    Wang L; Pancoska P; Keiderling TA
    Biochemistry; 1994 Jul; 33(28):8428-35. PubMed ID: 7518247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The stabilizing contribution of thymine in duplexes of (dA)24 with (dU)24, (dT)24, (dU12-dT12), (dU-dT)12, (dU2-dT2)6, or (dU3-dT3)4: nearest neighbor and next-nearest neighbor effects.
    Howard FB
    Biopolymers; 2005 Jul; 78(4):221-9. PubMed ID: 15880386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic microenvironmental effects on triplex DNA stabilization: cationic counterion effects on poly(dT)·poly(dA)·poly(dT).
    Beck A; Vijayanathan V; Thomas T; Thomas TJ
    Biochimie; 2013 Jun; 95(6):1310-8. PubMed ID: 23454377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mg2+-induced triplex formation of an equimolar mixture of poly(rA) and poly(rU).
    Kankia BI
    Nucleic Acids Res; 2003 Sep; 31(17):5101-7. PubMed ID: 12930961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of poly (dT).poly (dA).poly (dT).
    Chandrasekaran R; Giacometti A; Arnott S
    J Biomol Struct Dyn; 2000 Jun; 17(6):1011-22. PubMed ID: 10949168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature dependence of the Raman spectrum of DNA. II. Raman signatures of premelting and melting transitions of poly(dA).poly(dT) and comparison with poly(dA-dT).poly(dA-dT).
    Movileanu L; Benevides JM; Thomas GJ
    Biopolymers; 2002 Mar; 63(3):181-94. PubMed ID: 11787006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The binding of poly(rA) and poly(rU) to denatured DNA. I. Model studies with homopolymers.
    Mol JN; Borst P
    Nucleic Acids Res; 1976 Apr; 3(4):1013-27. PubMed ID: 1272800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intercalation of ethidium into triple-strand poly(rA).2poly(rU): a thermodynamic and kinetic study.
    Garcia B; Leal JM; Paiotta V; Ibeas S; Ruiz R; Secco F; Venturini M
    J Phys Chem B; 2006 Aug; 110(32):16131-8. PubMed ID: 16898771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the stability of double stranded nucleic acids.
    Dubins DN; Lee A; Macgregor RB; Chalikian TV
    J Am Chem Soc; 2001 Sep; 123(38):9254-9. PubMed ID: 11562205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The thermodynamic contribution of the 5-methyl group of thymine in the two- and three-stranded complexes formed by poly(dU) and poly(dT) with poly(dA).
    Ross PD; Howard FB
    Biopolymers; 2003 Feb; 68(2):210-22. PubMed ID: 12548624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand-induced formation of nucleic acid triple helices.
    Pilch DS; Breslauer KJ
    Proc Natl Acad Sci U S A; 1994 Sep; 91(20):9332-6. PubMed ID: 7524074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential sites of triple-helical nucleic acid formation in chromosomes of Rhynchosciara (Diptera: Sciaridae) and Drosophila melanogaster.
    Gorab E; Amabis JM; Stocker AJ; Drummond L; Stollar BD
    Chromosome Res; 2009; 17(6):821-32. PubMed ID: 19763852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.