These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 25477294)
1. Expanding metal mixture toxicity models to natural stream and lake invertebrate communities. Balistrieri LS; Mebane CA; Schmidt TS; Keller WB Environ Toxicol Chem; 2015 Apr; 34(4):761-76. PubMed ID: 25477294 [TBL] [Abstract][Full Text] [Related]
2. Larval aquatic insect responses to cadmium and zinc in experimental streams. Mebane CA; Schmidt TS; Balistrieri LS Environ Toxicol Chem; 2017 Mar; 36(3):749-762. PubMed ID: 27541712 [TBL] [Abstract][Full Text] [Related]
3. Comparison of different predictors of exposure for modeling impacts of metal mixtures on macroinvertebrates in stream microcosms. Iwasaki Y; Cadmus P; Clements WH Aquat Toxicol; 2013 May; 132-133():151-6. PubMed ID: 23501491 [TBL] [Abstract][Full Text] [Related]
4. Disentangling the effects of low pH and metal mixture toxicity on macroinvertebrate diversity. Fornaroli R; Ippolito A; Tolkkinen MJ; Mykrä H; Muotka T; Balistrieri LS; Schmidt TS Environ Pollut; 2018 Apr; 235():889-898. PubMed ID: 29351889 [TBL] [Abstract][Full Text] [Related]
5. Toxicity of proton-metal mixtures in the field: linking stream macroinvertebrate species diversity to chemical speciation and bioavailability. Stockdale A; Tipping E; Lofts S; Ormerod SJ; Clements WH; Blust R Aquat Toxicol; 2010 Oct; 100(1):112-9. PubMed ID: 20701986 [TBL] [Abstract][Full Text] [Related]
6. Predicting the toxicity of metal mixtures. Balistrieri LS; Mebane CA Sci Total Environ; 2014 Jan; 466-467():788-99. PubMed ID: 23973545 [TBL] [Abstract][Full Text] [Related]
7. Development and application of a multimetal multibiotic ligand model for assessing aquatic toxicity of metal mixtures. Santore RC; Ryan AC Environ Toxicol Chem; 2015 Apr; 34(4):777-87. PubMed ID: 25556972 [TBL] [Abstract][Full Text] [Related]
8. Metal mixture modeling evaluation project: 2. Comparison of four modeling approaches. Farley KJ; Meyer JS; Balistrieri LS; De Schamphelaere KA; Iwasaki Y; Janssen CR; Kamo M; Lofts S; Mebane CA; Naito W; Ryan AC; Santore RC; Tipping E Environ Toxicol Chem; 2015 Apr; 34(4):741-53. PubMed ID: 25418584 [TBL] [Abstract][Full Text] [Related]
9. A framework for ecological risk assessment of metal mixtures in aquatic systems. Nys C; Van Regenmortel T; Janssen CR; Oorts K; Smolders E; De Schamphelaere KAC Environ Toxicol Chem; 2018 Mar; 37(3):623-642. PubMed ID: 29135043 [TBL] [Abstract][Full Text] [Related]
10. Critical load analysis in hazard assessment of metals using a Unit World Model. Gandhi N; Bhavsar SP; Diamond ML Environ Toxicol Chem; 2011 Sep; 30(9):2157-66. PubMed ID: 21713970 [TBL] [Abstract][Full Text] [Related]
11. Metal and proton toxicity to lake zooplankton: a chemical speciation based modelling approach. Stockdale A; Tipping E; Lofts S; Fott J; Garmo OA; Hruska J; Keller B; Löfgren S; Maberly SC; Majer V; Nierzwicki-Bauer SA; Persson G; Schartau AK; Thackeray SJ; Valois A; Vrba J; Walseng B; Yan N Environ Pollut; 2014 Mar; 186():115-25. PubMed ID: 24370669 [TBL] [Abstract][Full Text] [Related]
12. Metal mixture modeling evaluation project: 3. Lessons learned and steps forward. Farley KJ; Meyer JS Environ Toxicol Chem; 2015 Apr; 34(4):821-32. PubMed ID: 25475765 [TBL] [Abstract][Full Text] [Related]
13. Bioavailability of metals in stream food webs and hazards to brook trout (Salvelinus fontinalis) in the upper Animas River watershed, Colorado. Besser JM; Brumbaugh WG; May TW; Church SE; Kimball BA Arch Environ Contam Toxicol; 2001 Jan; 40(1):48-59. PubMed ID: 11116340 [TBL] [Abstract][Full Text] [Related]
14. TICKET-UWM: a coupled kinetic, equilibrium, and transport screening model for metals in lakes. Farley KJ; Carbonaro RF; Fanelli CJ; Costanzo R; Rader KJ; Di Toro DM Environ Toxicol Chem; 2011 Jun; 30(6):1278-87. PubMed ID: 21381089 [TBL] [Abstract][Full Text] [Related]
15. Metal mixture toxicity to aquatic biota in laboratory experiments: application of the WHAM-FTOX model. Tipping E; Lofts S Aquat Toxicol; 2013 Oct; 142-143():114-22. PubMed ID: 23994673 [TBL] [Abstract][Full Text] [Related]
16. Application of Biotic Ligand and Toxic Unit modeling approaches to predict improvements in zooplankton species richness in smelter-damaged lakes near Sudbury, Ontario. Khan FR; Keller WB; Yan ND; Welsh PG; Wood CM; McGeer JC Environ Sci Technol; 2012 Feb; 46(3):1641-9. PubMed ID: 22191513 [TBL] [Abstract][Full Text] [Related]
17. Development and validation of a metal mixture bioavailability model (MMBM) to predict chronic toxicity of Ni-Zn-Pb mixtures to Ceriodaphnia dubia. Nys C; Janssen CR; De Schamphelaere KAC Environ Pollut; 2017 Jan; 220(Pt B):1271-1281. PubMed ID: 27838063 [TBL] [Abstract][Full Text] [Related]
18. Detecting the impact of heavy metal contaminated sediment on benthic macroinvertebrate communities in tropical streams. Bere T; Dalu T; Mwedzi T Sci Total Environ; 2016 Dec; 572():147-156. PubMed ID: 27494661 [TBL] [Abstract][Full Text] [Related]
19. Concentrations of metals in water, sediment, biofilm, benthic macroinvertebrates, and fish in the Boulder River watershed, Montana, and the role of colloids in metal uptake. Farag AM; Nimick DA; Kimball BA; Church SE; Harper DD; Brumbaugh WG Arch Environ Contam Toxicol; 2007 Apr; 52(3):397-409. PubMed ID: 17219028 [TBL] [Abstract][Full Text] [Related]
20. Development of a new toxic-unit model for the bioassessment of metals in streams. Schmidt TS; Clements WH; Mitchell KA; Church SE; Wanty RB; Fey DL; Verplanck PL; San Juan CA Environ Toxicol Chem; 2010 Nov; 29(11):2432-42. PubMed ID: 20853459 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]