BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 2547777)

  • 1. Electron transfer through center o of the cytochrome b-c1 complex of yeast mitochondria involves subunit VII, the ubiquinone-binding protein.
    Japa S; Beattie DS
    J Biol Chem; 1989 Aug; 264(24):13994-7. PubMed ID: 2547777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subunit VII, the ubiquinone-binding protein, of the cytochrome b-c1 complex of yeast mitochondria is involved in electron transport at center o and faces the matrix side of the membrane.
    Japa S; Zhu QS; Beattie DS
    J Biol Chem; 1987 Apr; 262(12):5441-4. PubMed ID: 3032932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ubiquinol-cytochrome c oxidoreductase. The redox reactions of the bis-heme cytochrome b in ubiquinone-sufficient and ubiquinone-deficient systems.
    Matsuno-Yagi A; Hatefi Y
    J Biol Chem; 1996 Mar; 271(11):6164-71. PubMed ID: 8626405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct interaction between the internal NADH: ubiquinone oxidoreductase and ubiquinol:cytochrome c oxidoreductase in the reduction of exogenous quinones by yeast mitochondria.
    Beattie DS; Japa S; Howton M; Zhu QS
    Arch Biochem Biophys; 1992 Feb; 292(2):499-505. PubMed ID: 1309974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct interaction between yeast NADH-ubiquinone oxidoreductase, succinate-ubiquinone oxidoreductase, and ubiquinol-cytochrome c oxidoreductase in the reduction of exogenous quinones.
    Zhu QS; Beattie DS
    J Biol Chem; 1988 Jan; 263(1):193-9. PubMed ID: 2826438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of electron transfer from ferrocytochrome b to ubiquinone, cytochrome c1 and duroquinone by antimycin.
    VON Jagow G; Bohrer C
    Biochim Biophys Acta; 1975 Jun; 387(3):409-24. PubMed ID: 166667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ubiquinol:cytochrome c oxidoreductase (complex III). Effect of inhibitors on cytochrome b reduction in submitochondrial particles and the role of ubiquinone in complex III.
    Matsuno-Yagi A; Hatefi Y
    J Biol Chem; 2001 Jun; 276(22):19006-11. PubMed ID: 11262412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential induced redox reactions in mitochondrial and bacterial cytochrome b-c1 complexes.
    Tolkatchev D; Yu L; Yu CA
    J Biol Chem; 1996 May; 271(21):12356-63. PubMed ID: 8647838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interaction of quinone analogues with wild-type and ubiquinone-deficient yeast mitochondria.
    Zhu QS; Beattie DS
    Biochim Biophys Acta; 1988 Jul; 934(3):303-13. PubMed ID: 2840117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of exogenous quinones and 2,6-dichlorophenol indophenol in cytochrome b-deficient yeast mitochondria: a differential effect on center i and center o of the cytochrome b-c1 complex.
    Zhu QS; Sprague SG; Beattie DS
    Arch Biochem Biophys; 1988 Sep; 265(2):447-53. PubMed ID: 2844120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An inhibitor of mitochondrial respiration which binds to cytochrome b and displaces quinone from the iron-sulfur protein of the cytochrome bc1 complex.
    von Jagow G; Ljungdahl PO; Graf P; Ohnishi T; Trumpower BL
    J Biol Chem; 1984 May; 259(10):6318-26. PubMed ID: 6327677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triphasic reduction of cytochrome b and the protonmotive Q cycle pathway of electron transfer in the cytochrome bc1 complex of the mitochondrial respiratory chain.
    Tang HL; Trumpower BL
    J Biol Chem; 1986 May; 261(14):6209-15. PubMed ID: 3009448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coenzyme Q analogues reconstitute electron transport and proton ejection but not the antimycin-induced "red shift" in mitochondria from coenzyme Q deficient mutants of the yeast Saccharomyces cerevisiae.
    Beattie DS; Clejan L
    Biochemistry; 1986 Mar; 25(6):1395-402. PubMed ID: 3008830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel purification of cytochrome c1 from mitochondrial Complex III. Reconstitution of antimycin-insensitive electron transfer with the iron-sulfur protein and cytochrome c1.
    Shimomura Y; Nishikimi M; Ozawa T
    J Biol Chem; 1985 Dec; 260(28):15075-80. PubMed ID: 2999105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myxothiazol, a new inhibitor of the cytochrome b-c1 segment of th respiratory chain.
    Thierbach G; Reichenbach H
    Biochim Biophys Acta; 1981 Dec; 638(2):282-9. PubMed ID: 6274398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the evolutionarily conserved cytochrome b tryptophan 142 in the ubiquinol oxidation catalyzed by the bc1 complex in the yeast Saccharomyces cerevisiae.
    Bruel C; di Rago JP; Slonimski PP; Lemesle-Meunier D
    J Biol Chem; 1995 Sep; 270(38):22321-8. PubMed ID: 7673215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ubiquinol-cytochrome c oxidoreductase of higher plants. Isolation and characterization of the bc1 complex from potato tuber mitochondria.
    Berry EA; Huang LS; DeRose VJ
    J Biol Chem; 1991 May; 266(14):9064-77. PubMed ID: 1851164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EPR characterization of the cytochrome b-c1 complex from Rhodobacter sphaeroides.
    McCurley JP; Miki T; Yu L; Yu CA
    Biochim Biophys Acta; 1990 Nov; 1020(2):176-86. PubMed ID: 2173951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ubiquinol:cytochrome c oxidoreductase. The redox reactions of the bis-heme cytochrome b in unenergized and energized submitochondrial particles.
    Matsuno-Yagi A; Hatefi Y
    J Biol Chem; 1997 Jul; 272(27):16928-33. PubMed ID: 9202003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ubiquinol:cytochrome c oxidoreductase. Effects of inhibitors on reverse electron transfer from the iron-sulfur protein to cytochrome b.
    Matsuno-Yagi A; Hatefi Y
    J Biol Chem; 1999 Apr; 274(14):9283-8. PubMed ID: 10092604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.