These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 25477811)

  • 1. Macroscopic complexity from an autonomous network of networks of theta neurons.
    Luke TB; Barreto E; So P
    Front Comput Neurosci; 2014; 8():145. PubMed ID: 25477811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic Diversity Suppresses Complex Collective Behavior in Networks of Theta Neurons.
    Lin L; Barreto E; So P
    Front Comput Neurosci; 2020; 14():44. PubMed ID: 32528269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the network dynamics of pulse-coupled neurons.
    Chandra S; Hathcock D; Crain K; Antonsen TM; Girvan M; Ott E
    Chaos; 2017 Mar; 27(3):033102. PubMed ID: 28364765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete classification of the macroscopic behavior of a heterogeneous network of theta neurons.
    Luke TB; Barreto E; So P
    Neural Comput; 2013 Dec; 25(12):3207-34. PubMed ID: 24047318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review.
    Bick C; Goodfellow M; Laing CR; Martens EA
    J Math Neurosci; 2020 May; 10(1):9. PubMed ID: 32462281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronization transition in neuronal networks composed of chaotic or non-chaotic oscillators.
    Xu K; Maidana JP; Castro S; Orio P
    Sci Rep; 2018 May; 8(1):8370. PubMed ID: 29849108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microscopic mechanism for self-organized quasiperiodicity in random networks of nonlinear oscillators.
    Burioni R; di Santo S; di Volo M; Vezzani A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042918. PubMed ID: 25375578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Birth and destruction of collective oscillations in a network of two populations of coupled type 1 neurons.
    Jüttner B; Henriksen C; Martens EA
    Chaos; 2021 Feb; 31(2):023141. PubMed ID: 33653075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multistability and Long-Timescale Transients Encoded by Network Structure in a Model of
    Kunert-Graf JM; Shlizerman E; Walker A; Kutz JN
    Front Comput Neurosci; 2017; 11():53. PubMed ID: 28659783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of collective network chaos.
    Wagemakers A; Barreto E; Sanjuán MA; So P
    Chaos; 2014 Jun; 24(2):023127. PubMed ID: 24985441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bifurcation analysis of the dynamics of interacting subnetworks of a spiking network.
    Lagzi F; Atay FM; Rotter S
    Sci Rep; 2019 Aug; 9(1):11397. PubMed ID: 31388027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic organizations and dynamical properties of weakly connected neural oscillators. I. Analysis of a canonical model.
    Hoppensteadt FC; Izhikevich EM
    Biol Cybern; 1996 Aug; 75(2):117-27. PubMed ID: 8855350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale modeling of brain dynamics: from single neurons and networks to mathematical tools.
    Siettos C; Starke J
    Wiley Interdiscip Rev Syst Biol Med; 2016 Sep; 8(5):438-58. PubMed ID: 27340949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesoscopic model reduction for the collective dynamics of sparse coupled oscillator networks.
    Smith LD; Gottwald GA
    Chaos; 2021 Jul; 31(7):073116. PubMed ID: 34340344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency assortativity can induce chaos in oscillator networks.
    Skardal PS; Restrepo JG; Ott E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):060902. PubMed ID: 26172652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyzing the competition of gamma rhythms with delayed pulse-coupled oscillators in phase representation.
    Viriyopase A; Memmesheimer RM; Gielen S
    Phys Rev E; 2018 Aug; 98(2-1):022217. PubMed ID: 30253475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macroscopic models for networks of coupled biological oscillators.
    Hannay KM; Forger DB; Booth V
    Sci Adv; 2018 Aug; 4(8):e1701047. PubMed ID: 30083596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generating macroscopic chaos in a network of globally coupled phase oscillators.
    So P; Barreto E
    Chaos; 2011 Sep; 21(3):033127. PubMed ID: 21974662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic mean-field formulation of the dynamics of diluted neural networks.
    Angulo-Garcia D; Torcini A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022928. PubMed ID: 25768590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.