BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 25478562)

  • 1. Integrative workflows for metagenomic analysis.
    Ladoukakis E; Kolisis FN; Chatziioannou AA
    Front Cell Dev Biol; 2014; 2():70. PubMed ID: 25478562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ANASTASIA: An Automated Metagenomic Analysis Pipeline for Novel Enzyme Discovery Exploiting Next Generation Sequencing Data.
    Koutsandreas T; Ladoukakis E; Pilalis E; Zarafeta D; Kolisis FN; Skretas G; Chatziioannou AA
    Front Genet; 2019; 10():469. PubMed ID: 31178894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BioMaS: a modular pipeline for Bioinformatic analysis of Metagenomic AmpliconS.
    Fosso B; Santamaria M; Marzano M; Alonso-Alemany D; Valiente G; Donvito G; Monaco A; Notarangelo P; Pesole G
    BMC Bioinformatics; 2015 Jul; 16():203. PubMed ID: 26130132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Closha: bioinformatics workflow system for the analysis of massive sequencing data.
    Ko G; Kim PG; Yoon J; Han G; Park SJ; Song W; Lee B
    BMC Bioinformatics; 2018 Feb; 19(Suppl 1):43. PubMed ID: 29504905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NGScloud2: optimized bioinformatic analysis using Amazon Web Services.
    Mora-Márquez F; Vázquez-Poletti JL; López de Heredia U
    PeerJ; 2021; 9():e11237. PubMed ID: 33959420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. systemPipeR: NGS workflow and report generation environment.
    H Backman TW; Girke T
    BMC Bioinformatics; 2016 Sep; 17():388. PubMed ID: 27650223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MetaSpark: a spark-based distributed processing tool to recruit metagenomic reads to reference genomes.
    Zhou W; Li R; Yuan S; Liu C; Yao S; Luo J; Niu B
    Bioinformatics; 2017 Apr; 33(7):1090-1092. PubMed ID: 28065898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NEAT: a framework for building fully automated NGS pipelines and analyses.
    Schorderet P
    BMC Bioinformatics; 2016 Feb; 17():53. PubMed ID: 26830846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Web Resources for Metagenomics Studies.
    Dudhagara P; Bhavsar S; Bhagat C; Ghelani A; Bhatt S; Patel R
    Genomics Proteomics Bioinformatics; 2015 Oct; 13(5):296-303. PubMed ID: 26602607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinformatic Challenges in Clinical Diagnostic Application of Targeted Next Generation Sequencing: Experience from Pheochromocytoma.
    Crona J; Ljungström V; Welin S; Walz MK; Hellman P; Björklund P
    PLoS One; 2015; 10(7):e0133210. PubMed ID: 26230854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metagenomics: tools and insights for analyzing next-generation sequencing data derived from biodiversity studies.
    Oulas A; Pavloudi C; Polymenakou P; Pavlopoulos GA; Papanikolaou N; Kotoulas G; Arvanitidis C; Iliopoulos I
    Bioinform Biol Insights; 2015; 9():75-88. PubMed ID: 25983555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. COGNIZER: A Framework for Functional Annotation of Metagenomic Datasets.
    Bose T; Haque MM; Reddy C; Mande SS
    PLoS One; 2015; 10(11):e0142102. PubMed ID: 26561344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SciApps: a cloud-based platform for reproducible bioinformatics workflows.
    Wang L; Lu Z; Van Buren P; Ware D
    Bioinformatics; 2018 Nov; 34(22):3917-3920. PubMed ID: 29897418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A review on the bioinformatics pipelines for metagenomic research].
    Ye DD; Fan MM; Guan Q; Chen HJ; Ma ZS
    Dongwuxue Yanjiu; 2012 Dec; 33(6):574-85. PubMed ID: 23266976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secure and robust cloud computing for high-throughput forensic microsatellite sequence analysis and databasing.
    Bailey SF; Scheible MK; Williams C; Silva DSBS; Hoggan M; Eichman C; Faith SA
    Forensic Sci Int Genet; 2017 Nov; 31():40-47. PubMed ID: 28837856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of Metagenomic Next-Generation Sequencing Tests for Universal Pathogen Detection.
    Schlaberg R; Chiu CY; Miller S; Procop GW; Weinstock G; ;
    Arch Pathol Lab Med; 2017 Jun; 141(6):776-786. PubMed ID: 28169558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio and health informatics meets cloud : BioVLab as an example.
    Chae H; Jung I; Lee H; Marru S; Lee SW; Kim S
    Health Inf Sci Syst; 2013; 1():6. PubMed ID: 25825658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experiences with workflows for automating data-intensive bioinformatics.
    Spjuth O; Bongcam-Rudloff E; Hernández GC; Forer L; Giovacchini M; Guimera RV; Kallio A; Korpelainen E; Kańduła MM; Krachunov M; Kreil DP; Kulev O; Łabaj PP; Lampa S; Pireddu L; Schönherr S; Siretskiy A; Vassilev D
    Biol Direct; 2015 Aug; 10():43. PubMed ID: 26282399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PEGR: a management platform for ChIP-based next generation sequencing pipelines.
    Shao D; Kellogg G; Mahony S; Lai W; Pugh BF
    PEARC20 (2020); 2020 Jul; 2020():285-292. PubMed ID: 35662897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leveraging the power of high performance computing for next generation sequencing data analysis: tricks and twists from a high throughput exome workflow.
    Kawalia A; Motameny S; Wonczak S; Thiele H; Nieroda L; Jabbari K; Borowski S; Sinha V; Gunia W; Lang U; Achter V; Nürnberg P
    PLoS One; 2015; 10(5):e0126321. PubMed ID: 25942438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.