These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 25478642)

  • 1. X-ray mapping of nanoparticle superlattice thin films.
    Diroll BT; Doan-Nguyen VV; Cargnello M; Gaulding EA; Kagan CR; Murray CB
    ACS Nano; 2014 Dec; 8(12):12843-50. PubMed ID: 25478642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembled simple hexagonal AB(2) binary nanocrystal superlattices: SEM, GISAXS, and defects.
    Smith DK; Goodfellow B; Smilgies DM; Korgel BA
    J Am Chem Soc; 2009 Mar; 131(9):3281-90. PubMed ID: 19216526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation and interpretation of 2D diffraction patterns from self-assembled nanostructured films at arbitrary angles of incidence: from grazing incidence (above the critical angle) to transmission perpendicular to the substrate.
    Tate MP; Urade VN; Kowalski JD; Wei TC; Hamilton BD; Eggiman BW; Hillhouse HW
    J Phys Chem B; 2006 May; 110(20):9882-92. PubMed ID: 16706443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Height-resolved quantification of microstructure and texture in polycrystalline thin films using TEM orientation mapping.
    Aebersold AB; Alexander DT; Hébert C
    Ultramicroscopy; 2015 Dec; 159 Pt 1():112-23. PubMed ID: 26363209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals.
    Goodfellow BW; Yu Y; Bosoy CA; Smilgies DM; Korgel BA
    J Phys Chem Lett; 2015 Jul; 6(13):2406-12. PubMed ID: 26266710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superlattice growth and rearrangement during evaporation-induced nanoparticle self-assembly.
    Josten E; Wetterskog E; Glavic A; Boesecke P; Feoktystov A; Brauweiler-Reuters E; Rücker U; Salazar-Alvarez G; Brückel T; Bergström L
    Sci Rep; 2017 Jun; 7(1):2802. PubMed ID: 28584236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping the structural order of laser-induced periodic surface structures in thin polymer films by microfocus beam grazing incidence small-angle X-ray scattering.
    Martín-Fabiani I; Rebollar E; García-Gutiérrez MC; Rueda DR; Castillejo M; Ezquerra TA
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3162-9. PubMed ID: 25606717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupled Dynamics of Colloidal Nanoparticle Spreading and Self-Assembly at a Fluid-Fluid Interface.
    Balazs DM; Dunbar TA; Smilgies DM; Hanrath T
    Langmuir; 2020 Jun; 36(22):6106-6115. PubMed ID: 32390432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Confined Growth of DNA-Assembled Superlattice Films.
    Zheng CY; Yao Y; Deng J; Seifert S; Wong AM; Lee B; Mirkin CA
    ACS Nano; 2022 Mar; 16(3):4813-4822. PubMed ID: 35213130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding Fe
    Huang X; Zhu J; Ge B; Deng K; Wu X; Xiao T; Jiang T; Quan Z; Cao YC; Wang Z
    J Am Chem Soc; 2019 Feb; 141(7):3198-3206. PubMed ID: 30685973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preliminary studies in the electrodeposition of PbSe/PbTe superlattice thin films via electrochemical atomic layer deposition (ALD).
    Vaidyanathan R; Cox SM; Happek U; Banga D; Mathe MK; Stickney JL
    Langmuir; 2006 Dec; 22(25):10590-5. PubMed ID: 17129034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grain boundary character distribution of nanocrystalline Cu thin films using stereological analysis of transmission electron microscope orientation maps.
    Darbal AD; Ganesh KJ; Liu X; Lee SB; Ledonne J; Sun T; Yao B; Warren AP; Rohrer GS; Rollett AD; Ferreira PJ; Coffey KR; Barmak K
    Microsc Microanal; 2013 Feb; 19(1):111-9. PubMed ID: 23380005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topotactic interconversion of nanoparticle superlattices.
    Macfarlane RJ; Jones MR; Lee B; Auyeung E; Mirkin CA
    Science; 2013 Sep; 341(6151):1222-5. PubMed ID: 23970559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Situ Electron Microscopy Imaging and Quantitative Structural Modulation of Nanoparticle Superlattices.
    Kim J; Jones MR; Ou Z; Chen Q
    ACS Nano; 2016 Nov; 10(11):9801-9808. PubMed ID: 27723304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grazing incidence wide angle x-ray scattering at the wiggler beamline BW4 of HASYLAB.
    Perlich J; Rubeck J; Botta S; Gehrke R; Roth SV; Ruderer MA; Prams SM; Rawolle M; Zhong Q; Körstgens V; Müller-Buschbaum P
    Rev Sci Instrum; 2010 Oct; 81(10):105105. PubMed ID: 21034117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA based strategy to nanoparticle superlattices.
    Mazid RR; Si KJ; Cheng W
    Methods; 2014 May; 67(2):215-26. PubMed ID: 24508551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructure characterization of BaSnO
    Yun H; Ganguly K; Postiglione W; Jalan B; Leighton C; Mkhoyan KA; Jeong JS
    Sci Rep; 2018 Jul; 8(1):10245. PubMed ID: 29980713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of BiFeO
    Plokhikh AV; Falmbigl M; Golovina IS; Akbashev AR; Karateev IA; Presnyakov MY; Vasiliev AL; Spanier JE
    Chemphyschem; 2017 Aug; 18(15):1966-1970. PubMed ID: 28631872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated grain mapping using wide angle convergent beam electron diffraction in transmission electron microscope for nanomaterials.
    Kumar V
    Microsc Microanal; 2011 Dec; 17(6):859-65. PubMed ID: 22067632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-energy transmission Laue micro-beam X-ray diffraction: a probe for intra-granular lattice orientation and elastic strain in thicker samples.
    Hofmann F; Song X; Abbey B; Jun TS; Korsunsky AM
    J Synchrotron Radiat; 2012 May; 19(Pt 3):307-18. PubMed ID: 22514163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.