BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 25478712)

  • 1. Self-assembly of amphiphilic janus particles into monolayer capsules for enhanced enzyme catalysis in organic media.
    Cao W; Huang R; Qi W; Su R; He Z
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):465-73. PubMed ID: 25478712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oriented Enzyme Immobilization at the Oil/Water Interface Enhances Catalytic Activity and Recyclability in a Pickering Emulsion.
    Wang J; Huang R; Qi W; Su R; He Z
    Langmuir; 2017 Oct; 33(43):12317-12325. PubMed ID: 28968113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Submicron Inverse Pickering Emulsions for Highly Efficient and Recyclable Enzymatic Catalysis.
    Jiang H; Li Y; Hong L; Ngai T
    Chem Asian J; 2018 Nov; 13(22):3533-3539. PubMed ID: 29992769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encapsulation of laccase in silica colloidosomes for catalysis in organic media.
    Zhang C; Hu C; Zhao Y; Möller M; Yan K; Zhu X
    Langmuir; 2013 Dec; 29(49):15457-62. PubMed ID: 24274176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inverse Pickering Emulsion Stabilized by Binary Particles with Contrasting Characteristics and Functionality for Interfacial Biocatalysis.
    Jiang H; Liu L; Li Y; Yin S; Ngai T
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4989-4997. PubMed ID: 31909591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial Polymerization of Dopamine in a Pickering Emulsion: Synthesis of Cross-Linkable Colloidosomes and Enzyme Immobilization at Oil/Water Interfaces.
    Qu Y; Huang R; Qi W; Su R; He Z
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14954-64. PubMed ID: 26104042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switchable CO
    Wang W; Zhou R; Di S; Mao X; Huang WC
    J Agric Food Chem; 2024 May; 72(17):9967-9973. PubMed ID: 38639643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring Particle-Enzyme Nanoconjugates for Biocatalysis at the Organic-Organic Interface.
    Sun Z; Cai M; Hübner R; Ansorge-Schumacher MB; Wu C
    ChemSusChem; 2020 Dec; 13(24):6523-6527. PubMed ID: 33078882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pickering Interfacial Catalysts for solvent-free biomass transformation: physicochemical behavior of non-aqueous emulsions.
    Fan Z; Tay A; Pera-Titus M; Zhou WJ; Benhabbari S; Feng X; Malcouronne G; Bonneviot L; De Campo F; Wang L; Clacens JM
    J Colloid Interface Sci; 2014 Aug; 427():80-90. PubMed ID: 24360842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme confined in silica-based nanocages for biocatalysis in a Pickering emulsion.
    Liu J; Lan G; Peng J; Li Y; Li C; Yang Q
    Chem Commun (Camb); 2013 Oct; 49(83):9558-60. PubMed ID: 24018836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recycling nanoparticle catalysts without separation based on a pickering emulsion/organic biphasic system.
    Liu H; Zhang Z; Yang H; Cheng F; Du Z
    ChemSusChem; 2014 Jul; 7(7):1888-900. PubMed ID: 24823630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipase-Immobilized Cellulosic Capsules with Water Absorbency for Enhanced Pickering Interfacial Biocatalysis.
    He X; Binks BP; Hu J; Gates I; Lu Q
    Langmuir; 2021 Jan; 37(2):810-819. PubMed ID: 33406359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid lipid-silica microcapsules engineered by phase coacervation of Pickering emulsions to enhance lipid hydrolysis.
    Simovic S; Heard P; Prestidge CA
    Phys Chem Chem Phys; 2010 Jul; 12(26):7162-70. PubMed ID: 20490395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Encapsulation of enzyme via one-step template-free formation of stable organic-inorganic capsules: A simple and efficient method for immobilizing enzyme with high activity and recyclability.
    Huang R; Wu M; Goldman MJ; Li Z
    Biotechnol Bioeng; 2015 Jun; 112(6):1092-101. PubMed ID: 25580912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of enzymes on fumed silica nanoparticles for applications in nonaqueous media.
    Cruz JC; Würges K; Kramer M; Pfromm PH; Rezac ME; Czermak P
    Methods Mol Biol; 2011; 743():147-60. PubMed ID: 21553189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capsules templated from water-in-oil Pickering emulsions for enzyme encapsulation.
    Liu L; Wei J; Ho KM; Chiu KY; Ngai T
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):559-568. PubMed ID: 36179576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of lipase and trypsin encapsulated in mesoporous materials with varying pore sizes and pH conditions.
    Gustafsson H; Thörn C; Holmberg K
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):464-71. PubMed ID: 21733664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle cages for enzyme catalysis in organic media.
    Wu C; Bai S; Ansorge-Schumacher MB; Wang D
    Adv Mater; 2011 Dec; 23(47):5694-9. PubMed ID: 22072496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micrometer-sized gold-silica Janus particles as particulate emulsifiers.
    Fujii S; Yokoyama Y; Miyanari Y; Shiono T; Ito M; Yusa S; Nakamura Y
    Langmuir; 2013 May; 29(18):5457-65. PubMed ID: 23617765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilization of lipase on methyl-modified silica aerogels by physical adsorption.
    Gao S; Wang Y; Wang T; Luo G; Dai Y
    Bioresour Technol; 2009 Jan; 100(2):996-9. PubMed ID: 18684619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.