BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 25478845)

  • 1. β-Arm flexibility of HU from Staphylococcus aureus dictates the DNA-binding and recognition mechanism.
    Kim DH; Im H; Jee JG; Jang SB; Yoon HJ; Kwon AR; Kang SM; Lee BJ
    Acta Crystallogr D Biol Crystallogr; 2014 Dec; 70(Pt 12):3273-89. PubMed ID: 25478845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible DNA bending in HU-DNA cocrystal structures.
    Swinger KK; Lemberg KM; Zhang Y; Rice PA
    EMBO J; 2003 Jul; 22(14):3749-60. PubMed ID: 12853489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards understanding the molecular recognition process in prokaryotic zinc-finger domain.
    Russo L; Palmieri M; Caso JV; D'Abrosca G; Diana D; Malgieri G; Baglivo I; Isernia C; Pedone PV; Fattorusso R
    Eur J Med Chem; 2015 Feb; 91():100-8. PubMed ID: 25240418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shaping the Borrelia burgdorferi genome: crystal structure and binding properties of the DNA-bending protein Hbb.
    Mouw KW; Rice PA
    Mol Microbiol; 2007 Mar; 63(5):1319-30. PubMed ID: 17244195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced conformational flexibility of the histone-like (HU) protein from Mycoplasma gallisepticum.
    Altukhov DA; Talyzina AA; Agapova YK; Vlaskina AV; Korzhenevskiy DA; Bocharov EV; Rakitina TV; Timofeev VI; Popov VO
    J Biomol Struct Dyn; 2018 Jan; 36(1):45-53. PubMed ID: 27884082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural plasticity and thermal stability of the histone-like protein from Spiroplasma melliferum are due to phenylalanine insertions into the conservative scaffold.
    Timofeev VI; Altukhov DA; Talyzina AA; Agapova YK; Vlaskina AV; Korzhenevskiy DA; Kleymenov SY; Bocharov EV; Rakitina TV
    J Biomol Struct Dyn; 2018 Dec; 36(16):4392-4404. PubMed ID: 29283021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studying allosteric regulation in metal sensor proteins using computational methods.
    Chakravorty DK; Merz KM
    Adv Protein Chem Struct Biol; 2014; 96():181-218. PubMed ID: 25443958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and dynamics of the DNA binding protein HU from Bacillus stearothermophilus by NMR spectroscopy.
    Boelens R; Vis H; Vorgias CE; Wilson KS; Kaptein R
    Biopolymers; 1996; 40(5):553-9. PubMed ID: 9101760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of histone-like HU protein DNA-binding properties and HU/IHF protein sequence alignment.
    Kamashev D; Agapova Y; Rastorguev S; Talyzina AA; Boyko KM; Korzhenevskiy DA; Vlaskina A; Vasilov R; Timofeev VI; Rakitina TV
    PLoS One; 2017; 12(11):e0188037. PubMed ID: 29131864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of AmtR, the global nitrogen regulator of Corynebacterium glutamicum, in free and DNA-bound forms.
    Palanca C; Rubio V
    FEBS J; 2016 Mar; 283(6):1039-59. PubMed ID: 26744254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structures of SarA, a pleiotropic regulator of virulence genes in S. aureus.
    Schumacher MA; Hurlburt BK; Brennan RG
    Nature; 2001 Jan; 409(6817):215-9. PubMed ID: 11196648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of the DNA-binding domain of the response regulator SaeR from Staphylococcus aureus.
    Fan X; Zhang X; Zhu Y; Niu L; Teng M; Sun B; Li X
    Acta Crystallogr D Biol Crystallogr; 2015 Aug; 71(Pt 8):1768-76. PubMed ID: 26249357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of DNA conformations through the formation of alternative high-order HU-DNA complexes.
    Sagi D; Friedman N; Vorgias C; Oppenheim AB; Stavans J
    J Mol Biol; 2004 Aug; 341(2):419-28. PubMed ID: 15276833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A conformational ensemble derived using NMR methyl chemical shifts reveals a mechanical clamping transition that gates the binding of the HU protein to DNA.
    Kannan A; Camilloni C; Sahakyan AB; Cavalli A; Vendruscolo M
    J Am Chem Soc; 2014 Feb; 136(6):2204-7. PubMed ID: 24517490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray crystal structure of the DNA-binding domain of response regulator WalR essential to the cell viability of staphylococcus aureus and interaction with target DNA.
    Doi A; Okajima T; Gotoh Y; Tanizawa K; Utsumi R
    Biosci Biotechnol Biochem; 2010; 74(9):1901-7. PubMed ID: 20834167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IHF and HU: flexible architects of bent DNA.
    Swinger KK; Rice PA
    Curr Opin Struct Biol; 2004 Feb; 14(1):28-35. PubMed ID: 15102446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron(II) triggered conformational changes in Escherichia coli fur upon DNA binding: a study using molecular modeling.
    Hamed MY; Al-Jabour S
    J Mol Graph Model; 2006 Oct; 25(2):234-46. PubMed ID: 16443380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleoid compaction by MrgA(Asp56Ala/Glu60Ala) does not contribute to staphylococcal cell survival against oxidative stress and phagocytic killing by macrophages.
    Ushijima Y; Ohniwa RL; Maruyama A; Saito S; Tanaka Y; Morikawa K
    FEMS Microbiol Lett; 2014 Nov; 360(2):144-51. PubMed ID: 25227518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of a replication-terminator protein complexed with DNA.
    Kamada K; Horiuchi T; Ohsumi K; Shimamoto N; Morikawa K
    Nature; 1996 Oct; 383(6601):598-603. PubMed ID: 8857533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetics of sequence-specific protein-DNA association: computational analysis of integrase Tn916 binding to its target DNA.
    Gorfe AA; Jelesarov I
    Biochemistry; 2003 Oct; 42(40):11568-76. PubMed ID: 14529266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.