BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25478962)

  • 1. Improving lignocellulose degradation using xylanase-cellulase fusion protein with a glycine-serine linker.
    Kim HM; Jung S; Lee KH; Song Y; Bae HJ
    Int J Biol Macromol; 2015 Feb; 73():215-21. PubMed ID: 25478962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient function and characterization of GH10 xylanase (Xyl10g) from Gloeophyllum trabeum in lignocellulose degradation.
    Kim HM; Lee KH; Kim KH; Lee DS; Nguyen QA; Bae HJ
    J Biotechnol; 2014 Feb; 172():38-45. PubMed ID: 24380820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of bifunctional acidic endoglucanase (Cel5B) from Gloeophyllum trabeum.
    Kim HM; Lee YG; Patel DH; Lee KH; Lee DS; Bae HJ
    J Ind Microbiol Biotechnol; 2012 Jul; 39(7):1081-9. PubMed ID: 22395898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbohydrate-binding modules influence substrate specificity of an endoglucanase from Clostridium thermocellum.
    Ichikawa S; Yoshida M; Karita S; Kondo M; Goto M
    Biosci Biotechnol Biochem; 2016; 80(1):188-92. PubMed ID: 26223555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Customized optimization of cellulase mixtures for differently pretreated rice straw.
    Kim IJ; Jung JY; Lee HJ; Park HS; Jung YH; Park K; Kim KH
    Bioprocess Biosyst Eng; 2015 May; 38(5):929-37. PubMed ID: 25547288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic action of recombinant accessory hemicellulolytic and pectinolytic enzymes to Trichoderma reesei cellulase on rice straw degradation.
    Laothanachareon T; Bunterngsook B; Suwannarangsee S; Eurwilaichitr L; Champreda V
    Bioresour Technol; 2015 Dec; 198():682-90. PubMed ID: 26433794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced hydrolysis of lignocellulosic biomass: Bi-functional enzyme complexes expressed in Pichia pastoris improve bioethanol production from Miscanthus sinensis.
    Shin SK; Hyeon JE; Kim YI; Kang DH; Kim SW; Park C; Han SO
    Biotechnol J; 2015 Dec; 10(12):1912-9. PubMed ID: 26479167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a Cellulomonas fimi exoglucanase/xylanase-endoglucanase gene fusion which improves microbial degradation of cellulosic biomass.
    Duedu KO; French CE
    Enzyme Microb Technol; 2016 Nov; 93-94():113-121. PubMed ID: 27702471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generating bifunctional fusion enzymes composed of heat-active endoglucanase (Cel5A) and endoxylanase (XylT).
    Rizk M; Elleuche S; Antranikian G
    Biotechnol Lett; 2015 Jan; 37(1):139-45. PubMed ID: 25214221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bi-functional fusion enzyme EG-M-Xyn displaying endoglucanase and xylanase activities and its utility in improving lignocellulose degradation.
    Chen CC; Gao GJ; Kao AL; Tsai ZC
    Int J Biol Macromol; 2018 May; 111():722-729. PubMed ID: 29355625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of a multifunctional hemicellulase.
    Fan Z; Werkman JR; Yuan L
    Biotechnol Lett; 2009 May; 31(5):751-7. PubMed ID: 19169889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous expression of endo-1,4-β-xylanase A from Schizophyllum commune in Pichia pastoris and functional characterization of the recombinant enzyme.
    Song Y; Lee YG; Choi IS; Lee KH; Cho EJ; Bae HJ
    Enzyme Microb Technol; 2013 Mar; 52(3):170-6. PubMed ID: 23410928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility test of utilizing Saccharophagus degradans 2-40(T) as the source of crude enzyme for the saccharification of lignocellulose.
    Jung YH; Kim HK; Song DS; Choi IG; Yang TH; Lee HJ; Seung D; Kim KH
    Bioprocess Biosyst Eng; 2014 Apr; 37(4):707-10. PubMed ID: 23990129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interplays of enzyme, substrate, and surfactant on hydrolysis of native lignocellulosic biomass.
    Lee S; Akeprathumchai S; Bundidamorn D; Salaipeth L; Poomputsa K; Ratanakhanokchai K; Chang KL; Phitsuwan P
    Bioengineered; 2021 Dec; 12(1):5110-5124. PubMed ID: 34369275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced xylanase performance in the hydrolysis of lignocellulosic materials by surfactants and non-catalytic protein.
    Ge X; Sun Z; Xin D; Zhang J
    Appl Biochem Biotechnol; 2014 Feb; 172(4):2106-18. PubMed ID: 24338209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of chimeric proteins based on cellulase and xylanase from an insect gut bacterium.
    Adlakha N; Rajagopal R; Kumar S; Reddy VS; Yazdani SS
    Appl Environ Microbiol; 2011 Jul; 77(14):4859-66. PubMed ID: 21642416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a novel GH10 xylanase with a carbohydrate binding module from Aspergillus sulphureus and its synergistic hydrolysis activity with cellulase.
    Liu Y; Wang J; Bao C; Dong B; Cao Y
    Int J Biol Macromol; 2021 Jul; 182():701-711. PubMed ID: 33862072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recombinant cellulolytic or xylanolytic complex comprising the full-length scaffolding protein RjCipA and cellulase RjCel5B or xylanase RjXyn10C of Ruminiclostridium josui.
    Orita T; Sakka M; Kimura T; Sakka K
    Enzyme Microb Technol; 2017 Feb; 97():63-70. PubMed ID: 28010774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrolytic enzyme of cellulose for complex formulation applied research.
    Lin ZX; Zhang HM; Ji XJ; Chen JW; Huang H
    Appl Biochem Biotechnol; 2011 May; 164(1):23-33. PubMed ID: 20972891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 24.7-kDa copper-containing oxidase, secreted by Thermobifida fusca, significantly increasing the xylanase/cellulase-catalyzed hydrolysis of sugarcane bagasse.
    Chen CY; Hsieh ZS; Cheepudom J; Yang CH; Meng M
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):8977-86. PubMed ID: 23377789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.