These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25479259)

  • 1. Comparison of in-flight measures with predictions of a bio-mathematical fatigue model.
    Powell DM; Spencer MB; Petrie KJ
    Aviat Space Environ Med; 2014 Dec; 85(12):1177-84. PubMed ID: 25479259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatiguing effect of multiple take-offs and landings in regional airline operations.
    Honn KA; Satterfield BC; McCauley P; Caldwell JL; Van Dongen HP
    Accid Anal Prev; 2016 Jan; 86():199-208. PubMed ID: 26590506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue in trans-Atlantic airline operations: diaries and actigraphy for two- vs. three-pilot crews.
    Eriksen CA; Akerstedt T; Nilsson JP
    Aviat Space Environ Med; 2006 Jun; 77(6):605-12. PubMed ID: 16780238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Risk of Fatigue Among Airline Crew During 4 Consecutive Days of Flight Duty.
    Goffeng EM; Wagstaff A; Nordby KC; Meland A; Goffeng LO; Skare Ø; Lilja D; Lie JS
    Aerosp Med Hum Perform; 2019 May; 90(5):466-474. PubMed ID: 31023407
    [No Abstract]   [Full Text] [Related]  

  • 5. The sleep, subjective fatigue, and sustained attention of commercial airline pilots during an international pattern.
    Petrilli RM; Roach GD; Dawson D; Lamond N
    Chronobiol Int; 2006; 23(6):1357-62. PubMed ID: 17190718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring and Managing Cabin Crew Sleep and Fatigue During an Ultra-Long Range Trip.
    van den Berg MJ; Signal TL; Mulrine HM; Smith AA; Gander PH; Serfontein W
    Aerosp Med Hum Perform; 2015 Aug; 86(8):705-13. PubMed ID: 26387894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pilot fatigue: relationships with departure and arrival times, flight duration, and direction.
    Gander PH; Mulrine HM; van den Berg MJ; Smith AA; Signal TL; Wu LJ; Belenky G
    Aviat Space Environ Med; 2014 Aug; 85(8):833-40. PubMed ID: 25199126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-crew operations: stress and fatigue during long-haul night flights.
    Samel A; Wegmann HM; Vejvoda M; Drescher J; Gundel A; Manzey D; Wenzel J
    Aviat Space Environ Med; 1997 Aug; 68(8):679-87. PubMed ID: 9262808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled breaks as a fatigue countermeasure on the flight deck.
    Neri DF; Oyung RL; Colletti LM; Mallis MM; Tam PY; Dinges DF
    Aviat Space Environ Med; 2002 Jul; 73(7):654-64. PubMed ID: 12137101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circadian adaptation of airline pilots during extended duration operations between the USA and Asia.
    Gander P; van den Berg M; Mulrine H; Signal L; Mangie J
    Chronobiol Int; 2013 Oct; 30(8):963-72. PubMed ID: 23834703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the timing and duration of sleep in an operational setting using social factors.
    Kandelaars KJ; Fletcher A; Dorrian J; Baulk SD; Dawson D
    Chronobiol Int; 2006; 23(6):1265-76. PubMed ID: 17190711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue in operational settings: examples from the aviation environment.
    Rosekind MR; Gander PH; Miller DL; Gregory KB; Smith RM; Weldon KJ; Co EL; McNally KL; Lebacqz JV
    Hum Factors; 1994 Jun; 36(2):327-38. PubMed ID: 8070796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitigating and monitoring flight crew fatigue on a westward ultra-long-range flight.
    Signal TL; Mulrine HM; van den Berg MJ; Smith AA; Gander PH; Serfontein W
    Aviat Space Environ Med; 2014 Dec; 85(12):1199-208. PubMed ID: 25479262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flight controller alertness and performance during spaceflight shiftwork operations.
    Kelly SM; Rosekind MR; Dinges DF; Miller DL; Gillen KA; Gregory KB; Aguilar RD; Smith RM
    Hum Perf Extrem Environ; 1998 Sep; 3(1):100-6. PubMed ID: 12190073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated collection of fatigue ratings at the top of descent: a practical commercial airline tool.
    Powell DM; Spencer MB; Petrie KJ
    Aviat Space Environ Med; 2011 Nov; 82(11):1037-41. PubMed ID: 22097638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of mathematical model predictions to experimental data of fatigue and performance.
    Van Dongen HP
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A15-36. PubMed ID: 15018263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An exploration of the utility of mathematical modeling predicting fatigue from sleep/wake history and circadian phase applied in accident analysis and prevention: the crash of Comair Flight 5191.
    Pruchnicki SA; Wu LJ; Belenky G
    Accid Anal Prev; 2011 May; 43(3):1056-61. PubMed ID: 21376901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian rhythmicity and fatigue in flight operations.
    Graeber RC; Foushee HC; Gander PH; Noga GW
    J UOEH; 1985 Mar; 7 Suppl():122-30. PubMed ID: 4012100
    [No Abstract]   [Full Text] [Related]  

  • 19. Fatigue in the aviation environment: an overview of the causes and effects as well as recommended countermeasures.
    Caldwell JA
    Aviat Space Environ Med; 1997 Oct; 68(10):932-8. PubMed ID: 9327120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in performance and bio-mathematical model performance predictions during 45 days of sleep restriction in a simulated space mission.
    Flynn-Evans EE; Kirkley C; Young M; Bathurst N; Gregory K; Vogelpohl V; End A; Hillenius S; Pecena Y; Marquez JJ
    Sci Rep; 2020 Sep; 10(1):15594. PubMed ID: 32973159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.