BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25479309)

  • 1. The old 3-oxoadipate pathway revisited: new insights in the catabolism of aromatics in the saprophytic fungus Aspergillus nidulans.
    Martins TM; Hartmann DO; Planchon S; Martins I; Renaut J; Silva Pereira C
    Fungal Genet Biol; 2015 Jan; 74():32-44. PubMed ID: 25479309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Twists and Turns in the Salicylate Catabolism of
    Martins TM; Martins C; Guedes P; Silva Pereira C
    mSystems; 2021 Jan; 6(1):. PubMed ID: 33500329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New branches in the degradation pathway of monochlorocatechols by Aspergillus nidulans: a metabolomics analysis.
    Martins TM; Núñez O; Gallart-Ayala H; Leitão MC; Galceran MT; Silva Pereira C
    J Hazard Mater; 2014 Mar; 268():264-72. PubMed ID: 24509097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genomics of the protocatechuate branch of the β-ketoadipate pathway in the Roseobacter lineage.
    Alejandro-Marín CM; Bosch R; Nogales B
    Mar Genomics; 2014 Oct; 17():25-33. PubMed ID: 24906178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic gene clusters encoding the enzymes of two branches of the 3-oxoadipate pathway in the pathogenic yeast Candida albicans.
    Gérecová G; Neboháčová M; Zeman I; Pryszcz LP; Tomáška Ľ; Gabaldón T; Nosek J
    FEMS Yeast Res; 2015 May; 15(3):. PubMed ID: 25743787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic network driven analysis of genome-wide transcription data from Aspergillus nidulans.
    David H; Hofmann G; Oliveira AP; Jarmer H; Nielsen J
    Genome Biol; 2006; 7(11):R108. PubMed ID: 17107606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactose and D-galactose catabolism in the filamentous fungus Aspergillus nidulans.
    Fekete E; Padra J; Szentirmai A; Karaffa L
    Acta Microbiol Immunol Hung; 2008 Jun; 55(2):119-24. PubMed ID: 18595317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel nuclear magnetic resonance spectroscopy methods demonstrate preferential carbon source utilization by Acinetobacter calcoaceticus.
    Gaines GL; Smith L; Neidle EL
    J Bacteriol; 1996 Dec; 178(23):6833-41. PubMed ID: 8955304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional cross-regulation of the catechol and protocatechuate branches of the beta-ketoadipate pathway contributes to carbon source-dependent expression of the Acinetobacter sp. strain ADP1 pobA gene.
    Brzostowicz PC; Reams AB; Clark TJ; Neidle EL
    Appl Environ Microbiol; 2003 Mar; 69(3):1598-606. PubMed ID: 12620848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beta-ketoadipic acid and muconolactone production from a lignin-related aromatic compound through the protocatechuate 3,4-metabolic pathway.
    Okamura-Abe Y; Abe T; Nishimura K; Kawata Y; Sato-Izawa K; Otsuka Y; Nakamura M; Kajita S; Masai E; Sonoki T; Katayama Y
    J Biosci Bioeng; 2016 Jun; 121(6):652-658. PubMed ID: 26723258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catabolism of benzoate and monohydroxylated benzoates by Amycolatopsis and Streptomyces spp.
    Grund E; Knorr C; Eichenlaub R
    Appl Environ Microbiol; 1990 May; 56(5):1459-64. PubMed ID: 2339895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The metabolism of aromatic acids by micro-organisms. Metabolic pathways in the fungi.
    Cain RB; Bilton RF; Darrah JA
    Biochem J; 1968 Aug; 108(5):797-828. PubMed ID: 5691754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global proteome survey of protocatechuate- and glucose-grown Corynebacterium glutamicum reveals multiple physiological differences.
    Haussmann U; Poetsch A
    J Proteomics; 2012 May; 75(9):2649-59. PubMed ID: 22450470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodiversity and evolution of primary carbon metabolism in Aspergillus nidulans and other Aspergillus spp.
    Flipphi M; Sun J; Robellet X; Karaffa L; Fekete E; Zeng AP; Kubicek CP
    Fungal Genet Biol; 2009 Mar; 46 Suppl 1():S19-S44. PubMed ID: 19610199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The beta-ketoadipate pathway and the biology of self-identity.
    Harwood CS; Parales RE
    Annu Rev Microbiol; 1996; 50():553-90. PubMed ID: 8905091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analysis of the protocatechuate branch of the β-ketoadipate pathway in Aspergillus niger.
    Sgro M; Chow N; Olyaei F; Arentshorst M; Geoffrion N; Ram AFJ; Powlowski J; Tsang A
    J Biol Chem; 2023 Aug; 299(8):105003. PubMed ID: 37399977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating Aspergillus nidulans secretome during colonisation of cork cell walls.
    Martins I; Garcia H; Varela A; Núñez O; Planchon S; Galceran MT; Renaut J; Rebelo LP; Silva Pereira C
    J Proteomics; 2014 Feb; 98():175-88. PubMed ID: 24316358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A gene cluster involved in degradation of substituted salicylates via ortho cleavage in Pseudomonas sp. strain MT1 encodes enzymes specifically adapted for transformation of 4-methylcatechol and 3-methylmuconate.
    Cámara B; Bielecki P; Kaminski F; dos Santos VM; Plumeier I; Nikodem P; Pieper DH
    J Bacteriol; 2007 Mar; 189(5):1664-74. PubMed ID: 17172348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The regulation of enzymes of aromatic-ring fission in fungi: organisms using both catechol and protocatechuate pathways.
    Halsall BE; Darrah JA; Cain RB
    Biochem J; 1969 Oct; 114(4):75P-76P. PubMed ID: 5343779
    [No Abstract]   [Full Text] [Related]  

  • 20. Characterization of the Aspergillus nidulans biotin biosynthetic gene cluster and use of the bioDA gene as a new transformation marker.
    Magliano P; Flipphi M; Sanglard D; Poirier Y
    Fungal Genet Biol; 2011 Feb; 48(2):208-15. PubMed ID: 20713166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.