BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 25479310)

  • 1. Interaction of a dietary fiber (pectin) with gastrointestinal components (bile salts, calcium, and lipase): a calorimetry, electrophoresis, and turbidity study.
    Espinal-Ruiz M; Parada-Alfonso F; Restrepo-Sánchez LP; Narváez-Cuenca CE; McClements DJ
    J Agric Food Chem; 2014 Dec; 62(52):12620-30. PubMed ID: 25479310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of dietary fibers [methyl cellulose, chitosan, and pectin] on digestion of lipids under simulated gastrointestinal conditions.
    Espinal-Ruiz M; Parada-Alfonso F; Restrepo-Sánchez LP; Narváez-Cuenca CE; McClements DJ
    Food Funct; 2014 Dec; 5(12):3083-95. PubMed ID: 25312704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal aspects of digestion of Pickering emulsions: Experiments and theoretical models of lipid digestion kinetics.
    Sarkar A; Zhang S; Holmes M; Ettelaie R
    Adv Colloid Interface Sci; 2019 Jan; 263():195-211. PubMed ID: 30580767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential Hypolipidemic Effects of Banana Condensed Tannins Through the Interaction with Digestive Juice Components Related to Lipid Digestion.
    Li X; Pu Y; Xu Y; Cao J; Jiang W
    J Agric Food Chem; 2021 Aug; 69(31):8703-8713. PubMed ID: 34324317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the interactions of a cationic surfactant (lauric arginate) with an anionic biopolymer (pectin): isothermal titration calorimetry, light scattering, and microelectrophoresis.
    Asker D; Weiss J; McClements DJ
    Langmuir; 2009 Jan; 25(1):116-22. PubMed ID: 19067576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of ITC in foods: A powerful tool for understanding the gastrointestinal fate of lipophilic compounds.
    Arroyo-Maya IJ; McClements DJ
    Biochim Biophys Acta; 2016 May; 1860(5):1026-1035. PubMed ID: 26456046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure characterization of high molecular weight soluble dietary fiber from mushroom Lentinula edodes (Berk.) Pegler and its interaction mechanism with pancreatic lipase and bile salts.
    Xue Z; Gao X; Jia Y; Wang Y; Lu Y; Zhang M; Panichayupakaranant P; Chen H
    Int J Biol Macromol; 2020 Jun; 153():1281-1290. PubMed ID: 31758996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlating the structure and in vitro digestion viscosities of different pectin fibers to in vivo human satiety.
    Logan K; Wright AJ; Goff HD
    Food Funct; 2015 Jan; 6(1):63-71. PubMed ID: 25336324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upper digestion fate of citrus pectin-stabilized emulsion: An interfacial behavior perspective.
    Wei R; Zhao S; Zhang L; Feng L; Zhao C; An Q; Bao Y; Zhang L; Zheng J
    Carbohydr Polym; 2021 Jul; 264():118040. PubMed ID: 33910723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of a cationic antimicrobial (ε-polylysine) with an anionic biopolymer (pectin): an isothermal titration calorimetry, microelectrophoresis, and turbidity study.
    Chang Y; McLandsborough L; McClements DJ
    J Agric Food Chem; 2011 May; 59(10):5579-88. PubMed ID: 21462961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium Alters the Interfacial Organization of Hydrolyzed Lipids during Intestinal Digestion.
    Torcello-Gómez A; Boudard C; Mackie AR
    Langmuir; 2018 Jun; 34(25):7536-7544. PubMed ID: 29870262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isothermal titration calorimetry study of pectin-ionic surfactant interactions.
    McClements DJ
    J Agric Food Chem; 2000 Nov; 48(11):5604-11. PubMed ID: 11087526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bile salts in digestion and transport of lipids.
    Macierzanka A; Torcello-Gómez A; Jungnickel C; Maldonado-Valderrama J
    Adv Colloid Interface Sci; 2019 Dec; 274():102045. PubMed ID: 31689682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variations in gastrointestinal lipases, pH and bile acid levels with food intake, age and diseases: Possible impact on oral lipid-based drug delivery systems.
    Amara S; Bourlieu C; Humbert L; Rainteau D; Carrière F
    Adv Drug Deliv Rev; 2019 Mar; 142():3-15. PubMed ID: 30926476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dietary pectin and mango pulp effects on small intestinal enzyme activity levels and macronutrient digestion in grower pigs.
    Pluschke AM; Williams BA; Zhang D; Gidley MJ
    Food Funct; 2018 Feb; 9(2):991-999. PubMed ID: 29340436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of tripolyphosphate cross-linking on the physical stability and lipase digestibility of chitosan-coated lipid droplets.
    Hu M; Li Y; Decker EA; Xiao H; McClements DJ
    J Agric Food Chem; 2010 Jan; 58(2):1283-9. PubMed ID: 19921835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between cellulose ethers and a bile salt in the control of lipid digestion of lipid-based systems.
    Torcello-Gómez A; Foster TJ
    Carbohydr Polym; 2014 Nov; 113():53-61. PubMed ID: 25256458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic bioaccessibility upon gastrointestinal digestion is highly determined by its speciation and lipid-bile salt interactions.
    Alava P; Du Laing G; Odhiambo M; Verliefde A; Tack F; Van de Wiele TR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(6):656-65. PubMed ID: 23442116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of pectin structure on the interaction with bile acids under in vitro conditions.
    Dongowski G
    Z Lebensm Unters Forsch; 1995 Oct; 201(4):390-8. PubMed ID: 8525707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing the Interactions of Dietary Condensed Tannins with Bile Salts.
    Li X; Jiao W; Zhang W; Xu Y; Cao J; Jiang W
    J Agric Food Chem; 2019 Aug; 67(34):9543-9550. PubMed ID: 31379164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.