These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
555 related articles for article (PubMed ID: 25479398)
21. Comparison of mono-rhamnolipids and di-rhamnolipids on microbial enhanced oil recovery (MEOR) applications. Rocha VAL; de Castilho LVA; de Castro RPV; Teixeira DB; Magalhães AV; Gomez JGC; Freire DMG Biotechnol Prog; 2020 Jul; 36(4):e2981. PubMed ID: 32083814 [TBL] [Abstract][Full Text] [Related]
22. High mono-rhamnolipids production by a novel isolate Pseudomonas aeruginosa LP20 from oily sludge: characterization, optimization, and potential application. Li C; Wang Y; Zhou L; Cui Q; Sun W; Yang J; Su H; Zhao F Lett Appl Microbiol; 2024 Feb; 77(2):. PubMed ID: 38366661 [TBL] [Abstract][Full Text] [Related]
23. Optimization and characterization of biosurfactant production from kitchen waste oil using Pseudomonas aeruginosa. Chen C; Sun N; Li D; Long S; Tang X; Xiao G; Wang L Environ Sci Pollut Res Int; 2018 May; 25(15):14934-14943. PubMed ID: 29549612 [TBL] [Abstract][Full Text] [Related]
24. Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Rahman KS; Rahman TJ; McClean S; Marchant R; Banat IM Biotechnol Prog; 2002; 18(6):1277-81. PubMed ID: 12467462 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of critical nutritional parameters and their significance in the production of rhamnolipid biosurfactants from Pseudomonas aeruginosa BS-161R. Kumar CG; Mamidyala SK; Sujitha P; Muluka H; Akkenapally S Biotechnol Prog; 2012; 28(6):1507-16. PubMed ID: 22961871 [TBL] [Abstract][Full Text] [Related]
26. Improved production of biosurfactant by a Pseudomonas aeruginosa mutant using vegetable oil refinery wastes. Raza ZA; Rehman A; Khan MS; Khalid ZM Biodegradation; 2007 Feb; 18(1):115-21. PubMed ID: 16491304 [TBL] [Abstract][Full Text] [Related]
27. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. George S; Jayachandran K J Appl Microbiol; 2013 Feb; 114(2):373-83. PubMed ID: 23164038 [TBL] [Abstract][Full Text] [Related]
28. Production and physico-chemical characterization of a biosurfactant produced by Pseudomonas aeruginosa OBP1 isolated from petroleum sludge. Bharali P; Konwar BK Appl Biochem Biotechnol; 2011 Aug; 164(8):1444-60. PubMed ID: 21468636 [TBL] [Abstract][Full Text] [Related]
29. Characterization of glycolipid biosurfactant from Pseudomonas aeruginosa CPCL isolated from petroleum-contaminated soil. Arutchelvi J; Doble M Lett Appl Microbiol; 2010 Jul; 51(1):75-82. PubMed ID: 20477962 [TBL] [Abstract][Full Text] [Related]
30. Rhamnolipid production by pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater. Li AH; Xu MY; Sun W; Sun GP Appl Biochem Biotechnol; 2011 Mar; 163(5):600-11. PubMed ID: 20830582 [TBL] [Abstract][Full Text] [Related]
31. Analysis of rhamnolipid biosurfactants produced through submerged fermentation using orange fruit peelings as sole carbon source. George S; Jayachandran K Appl Biochem Biotechnol; 2009 Sep; 158(3):694-705. PubMed ID: 18716921 [TBL] [Abstract][Full Text] [Related]
32. Optimization of environmental factors for improved production of rhamnolipid biosurfactant by Pseudomonas aeruginosa RS29 on glycerol. Saikia RR; Deka S; Deka M; Sarma H J Basic Microbiol; 2012 Aug; 52(4):446-57. PubMed ID: 22144225 [TBL] [Abstract][Full Text] [Related]
33. Biosurfactant synthesis by Pseudomonas aeruginosa LBI isolated from a hydrocarbon-contaminated site. Pirôllo MP; Mariano AP; Lovaglio RB; Costa SG; Walter V; Hausmann R; Contiero J J Appl Microbiol; 2008 Nov; 105(5):1484-90. PubMed ID: 18795978 [TBL] [Abstract][Full Text] [Related]
34. Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Pornsunthorntawee O; Wongpanit P; Chavadej S; Abe M; Rujiravanit R Bioresour Technol; 2008 Apr; 99(6):1589-95. PubMed ID: 17540558 [TBL] [Abstract][Full Text] [Related]
35. Optimization and characterization of rhamnolipids produced by Pseudomonas aeruginosa ATCC 9027 using molasses as a substrate. Braz LM; Salazar-Bryam AM; Andrade GSS; Tambourgi EB World J Microbiol Biotechnol; 2022 Dec; 39(2):51. PubMed ID: 36544076 [TBL] [Abstract][Full Text] [Related]
36. Microbial conversion of agro-processing waste (peanut meal) to rhamnolipid by Pseudomonas aeruginosa: solid-state fermentation, water extraction, medium optimization and potential applications. Zhao F; Zheng M; Xu X Bioresour Technol; 2023 Feb; 369():128426. PubMed ID: 36462764 [TBL] [Abstract][Full Text] [Related]
37. Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: Production, characterization and surface active properties of biosurfactant. Varjani SJ; Upasani VN Bioresour Technol; 2016 Dec; 221():510-516. PubMed ID: 27677153 [TBL] [Abstract][Full Text] [Related]
38. Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. Perfumo A; Banat IM; Canganella F; Marchant R Appl Microbiol Biotechnol; 2006 Aug; 72(1):132. PubMed ID: 16344932 [TBL] [Abstract][Full Text] [Related]
39. Production of novel rhamnolipids via biodegradation of waste cooking oil using Pseudomonas aeruginosa MTCC7815. Sharma S; Datta P; Kumar B; Tiwari P; Pandey LM Biodegradation; 2019 Aug; 30(4):301-312. PubMed ID: 30937572 [TBL] [Abstract][Full Text] [Related]
40. Structural and Physicochemical Characterization of Rhamnolipids produced by Pseudomonas aeruginosa P6. El-Housseiny GS; Aboshanab KM; Aboulwafa MM; Hassouna NA AMB Express; 2020 Nov; 10(1):201. PubMed ID: 33146788 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]