These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 25479504)

  • 1. Monolithic phononic crystals with a surface acoustic band gap from surface phonon-polariton coupling.
    Yudistira D; Boes A; Djafari-Rouhani B; Pennec Y; Yeo LY; Mitchell A; Friend JR
    Phys Rev Lett; 2014 Nov; 113(21):215503. PubMed ID: 25479504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full band gap for surface acoustic waves in a piezoelectric phononic crystal.
    Laude V; Wilm M; Benchabane S; Khelif A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036607. PubMed ID: 15903605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phononic crystals based on LiNbO3 realized using domain inversion by electron-beam irradiation.
    Assouar BM; Vincent B; Moubchir H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):273-8. PubMed ID: 18334333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for complete surface wave band gap in a piezoelectric phononic crystal.
    Benchabane S; Khelif A; Rauch JY; Robert L; Laude V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):065601. PubMed ID: 16906904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging phonon eigenstates and elucidating the energy storage characteristics of a honeycomb-lattice phononic crystal cavity.
    Otsuka PH; Chinbe R; Tomoda M; Matsuda O; Tanaka Y; Profunser DM; Kim S; Jeon H; Veres IA; Maznev AA; Wright OB
    Photoacoustics; 2023 Jun; 31():100481. PubMed ID: 37214426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear Bloch waves and coupled phonon-polariton in periodic piezoelectric waveguides.
    Piliposyan DG; Ghazaryan KB; Piliposian GT
    Ultrasonics; 2014 Feb; 54(2):644-54. PubMed ID: 24139302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Propagation of shear elastic and electromagnetic waves in one dimensional piezoelectric and piezomagnetic composites.
    Shi P; Chen CQ; Zou WN
    Ultrasonics; 2015 Jan; 55():42-7. PubMed ID: 25200701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phoxonic Hybrid Superlattice.
    Alonso-Redondo E; Huesmann H; El Boudouti el-H; Tremel W; Djafari-Rouhani B; Butt HJ; Fytas G
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12488-95. PubMed ID: 25855860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of initial stress on band gap of Love waves in a layered domain-inverted phononic crystal structure.
    Yang G; Zhang M; Hu J; Huang B; Xu M; Zhu Z; Du J
    Ultrasonics; 2020 Aug; 106():106145. PubMed ID: 32353615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete band gaps in two-dimensional phononic crystal slabs.
    Khelif A; Aoubiza B; Mohammadi S; Adibi A; Laude V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046610. PubMed ID: 17155195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband evolution of phononic-crystal-waveguide eigenstates in real- and k-spaces.
    Otsuka PH; Nanri K; Matsuda O; Tomoda M; Profunser DM; Veres IA; Danworaphong S; Khelif A; Benchabane S; Laude V; Wright OB
    Sci Rep; 2013 Nov; 3():3351. PubMed ID: 24284621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface resonant-states-enhanced acoustic wave tunneling in two-dimensional phononic crystals.
    Ke M; He Z; Peng S; Liu Z; Shi J; Wen W; Sheng P
    Phys Rev Lett; 2007 Jul; 99(4):044301. PubMed ID: 17678368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximizing phononic band gaps in piezocomposite materials by means of topology optimization.
    Vatanabe SL; Paulino GH; Silva EC
    J Acoust Soc Am; 2014 Aug; 136(2):494-501. PubMed ID: 25096084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging ripples on phononic crystals reveals acoustic band structure and Bloch harmonics.
    Profunser DM; Wright OB; Matsuda O
    Phys Rev Lett; 2006 Aug; 97(5):055502. PubMed ID: 17026111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs.
    Mohammadi S; Eftekhar AA; Khelif A; Adibi A
    Opt Express; 2010 Apr; 18(9):9164-72. PubMed ID: 20588763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear phononics using atomically thin membranes.
    Midtvedt D; Isacsson A; Croy A
    Nat Commun; 2014 Sep; 5():4838. PubMed ID: 25204322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A one-dimensional optomechanical crystal with a complete phononic band gap.
    Gomis-Bresco J; Navarro-Urrios D; Oudich M; El-Jallal S; Griol A; Puerto D; Chavez E; Pennec Y; Djafari-Rouhani B; Alzina F; Martínez A; Torres CM
    Nat Commun; 2014 Jul; 5():4452. PubMed ID: 25043827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monolithic Strong Coupling of Topological Surface Acoustic Wave Resonators on Lithium Niobate.
    Zhang ZD; Yu SY; Xu H; Lu MH; Chen YF
    Adv Mater; 2024 May; 36(21):e2312861. PubMed ID: 38340067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous occurrence of structure-directed and particle-resonance-induced phononic gaps in colloidal films.
    Still T; Cheng W; Retsch M; Sainidou R; Wang J; Jonas U; Stefanou N; Fytas G
    Phys Rev Lett; 2008 May; 100(19):194301. PubMed ID: 18518452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic lattice expansion of three-dimensional colloidal crystals and its impact on hypersonic phonon band gaps.
    Wu S; Zhu G; Zhang JS; Banerjee D; Bass JD; Ling C; Yano K
    Phys Chem Chem Phys; 2014 May; 16(19):8921-6. PubMed ID: 24691556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.