These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25479739)

  • 1. The coordinate system for force control.
    Saha DJ; Hu X; Perreault E; Murray W; Mussa-Ivaldi FA
    Exp Brain Res; 2015 Mar; 233(3):899-908. PubMed ID: 25479739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of double-joint arm posture in adults with unilateral brain damage.
    Mihaltchev P; Archambault PS; Feldman AG; Levin MF
    Exp Brain Res; 2005 Jun; 163(4):468-86. PubMed ID: 15690154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfer of motor learning across arm configurations.
    Malfait N; Shiller DM; Ostry DJ
    J Neurosci; 2002 Nov; 22(22):9656-60. PubMed ID: 12427820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New visuomotor maps are immediately available to the opposite limb.
    Carroll TJ; Poh E; de Rugy A
    J Neurophysiol; 2014 Jun; 111(11):2232-43. PubMed ID: 24598522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced crosslimb transfer of force-field learning for dynamics that are identical in extrinsic and joint-based coordinates for both limbs.
    Carroll TJ; de Rugy A; Howard IS; Ingram JN; Wolpert DM
    J Neurophysiol; 2016 Jan; 115(1):445-56. PubMed ID: 26581867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of age-related modifications of upper limb motor control strategies in a new dynamic environment.
    Cesqui B; Macrì G; Dario P; Micera S
    J Neuroeng Rehabil; 2008 Nov; 5():31. PubMed ID: 19019228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence, time, or state representation: how does the motor control system adapt to variable environments?
    Karniel A; Mussa-Ivaldi FA
    Biol Cybern; 2003 Jul; 89(1):10-21. PubMed ID: 12836029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Neural Feedback Response to Error As a Teaching Signal for the Motor Learning System.
    Albert ST; Shadmehr R
    J Neurosci; 2016 Apr; 36(17):4832-45. PubMed ID: 27122039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalization of motor learning based on multiple field exposures and local adaptation.
    Malfait N; Gribble PL; Ostry DJ
    J Neurophysiol; 2005 Jun; 93(6):3327-38. PubMed ID: 15659531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation to a novel multi-force environment.
    Kurtzer I; DiZio PA; Lackner JR
    Exp Brain Res; 2005 Jul; 164(1):120-32. PubMed ID: 15834711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordinated turn-and-reach movements. II. Planning in an external frame of reference.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):290-303. PubMed ID: 12522180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The human motor system alters its reaching movement plan for task-irrelevant, positional forces.
    Cashaback JG; McGregor HR; Gribble PL
    J Neurophysiol; 2015 Apr; 113(7):2137-49. PubMed ID: 25589594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actions and consequences in bimanual interaction are represented in different coordinate systems.
    Bays PM; Wolpert DM
    J Neurosci; 2006 Jun; 26(26):7121-6. PubMed ID: 16807341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible representations of dynamics are used in object manipulation.
    Ahmed AA; Wolpert DM; Flanagan JR
    Curr Biol; 2008 May; 18(10):763-768. PubMed ID: 18485709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forces and moments generated by the human arm: variability and control.
    Xu Y; Terekhov AV; Latash ML; Zatsiorsky VM
    Exp Brain Res; 2012 Nov; 223(2):159-75. PubMed ID: 23080084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human force discrimination during active arm motion for force feedback design.
    Feyzabadi S; Straube S; Folgheraiter M; Kirchner EA; Kim SK; Albiez JC
    IEEE Trans Haptics; 2013; 6(3):309-19. PubMed ID: 24808327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Individual movement features during prism adaptation correlate with after-effects and interlimb transfer.
    Renault AG; Lefumat H; Miall RC; Bringoux L; Bourdin C; Vercher JL; Sarlegna FR
    Psychol Res; 2020 Jun; 84(4):866-880. PubMed ID: 30406829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anticipatory control of center of mass and joint stability during voluntary arm movement from a standing posture: interplay between active and passive control.
    Patla AE; Ishac MG; Winter DA
    Exp Brain Res; 2002 Apr; 143(3):318-27. PubMed ID: 11889509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance drifts in two-finger cyclical force production tasks performed by one and two actors.
    Hasanbarani F; Reschechtko S; Latash ML
    Exp Brain Res; 2018 Mar; 236(3):779-794. PubMed ID: 29335750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.