These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 25479794)

  • 1. A review of in silico approaches for analysis and prediction of HIV-1-human protein-protein interactions.
    Bandyopadhyay S; Ray S; Mukhopadhyay A; Maulik U
    Brief Bioinform; 2015 Sep; 16(5):830-51. PubMed ID: 25479794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel biclustering approach to association rule mining for predicting HIV-1-human protein interactions.
    Mukhopadhyay A; Maulik U; Bandyopadhyay S
    PLoS One; 2012; 7(4):e32289. PubMed ID: 22539940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between intrinsically disordered proteins frequently occurs in a human protein-protein interaction network.
    Shimizu K; Toh H
    J Mol Biol; 2009 Oct; 392(5):1253-65. PubMed ID: 19660471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supervised learning and prediction of physical interactions between human and HIV proteins.
    Dyer MD; Murali TM; Sobral BW
    Infect Genet Evol; 2011 Jul; 11(5):917-23. PubMed ID: 21382517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating the type and direction information in predicting novel regulatory interactions between HIV-1 and human proteins using a biclustering approach.
    Mukhopadhyay A; Ray S; Maulik U
    BMC Bioinformatics; 2014 Jan; 15():26. PubMed ID: 24460683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of in Silico Methods for Design and Development of Drugs Targeting Protein-Protein Interactions.
    Cicaloni V; Trezza A; Pettini F; Spiga O
    Curr Top Med Chem; 2019; 19(7):534-554. PubMed ID: 30836920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network analysis and in silico prediction of protein-protein interactions with applications in drug discovery.
    Murakami Y; Tripathi LP; Prathipati P; Mizuguchi K
    Curr Opin Struct Biol; 2017 Jun; 44():134-142. PubMed ID: 28364585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational methods for predicting protein-protein interactions.
    Pitre S; Alamgir M; Green JR; Dumontier M; Dehne F; Golshani A
    Adv Biochem Eng Biotechnol; 2008; 110():247-67. PubMed ID: 18202838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of interactions between viral and host proteins using supervised machine learning methods.
    Barman RK; Saha S; Das S
    PLoS One; 2014; 9(11):e112034. PubMed ID: 25375323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A NMF based approach for integrating multiple data sources to predict HIV-1-human PPIs.
    Ray S; Bandyopadhyay S
    BMC Bioinformatics; 2016 Mar; 17():121. PubMed ID: 26956556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Silico Protein-Protein Interactions: Avoiding Data and Method Biases Over Sensitivity and Specificity.
    Folador EL; de Oliveira Junior AF; Tiwari S; Jamal SB; Ferreira RS; Barh D; Ghosh P; Silva A; Azevedo V
    Curr Protein Pept Sci; 2015; 16(8):689-700. PubMed ID: 25961403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting protein-protein interactions between human and hepatitis C virus via an ensemble learning method.
    Emamjomeh A; Goliaei B; Zahiri J; Ebrahimpour R
    Mol Biosyst; 2014 Dec; 10(12):3147-54. PubMed ID: 25230581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semi-supervised multi-task learning for predicting interactions between HIV-1 and human proteins.
    Qi Y; Tastan O; Carbonell JG; Klein-Seetharaman J; Weston J
    Bioinformatics; 2010 Sep; 26(18):i645-52. PubMed ID: 20823334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovering disease-genes by topological features in human protein-protein interaction network.
    Xu J; Li Y
    Bioinformatics; 2006 Nov; 22(22):2800-5. PubMed ID: 16954137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting Virus-host Protein Interactions: Feature Extraction and Machine Learning Approaches.
    Zheng N; Wang K; Zhan W; Deng L
    Curr Drug Metab; 2019; 20(3):177-184. PubMed ID: 30156155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrative in silico approach for discovering candidates for drug-targetable protein-protein interactions in interactome data.
    Sugaya N; Ikeda K; Tashiro T; Takeda S; Otomo J; Ishida Y; Shiratori A; Toyoda A; Noguchi H; Takeda T; Kuhara S; Sakaki Y; Iwayanagi T
    BMC Pharmacol; 2007 Aug; 7():10. PubMed ID: 17705877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From protein-protein complexes to interactomics.
    Collura V; Boissy G
    Subcell Biochem; 2007; 43():135-83. PubMed ID: 17953394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. k-Partite cliques of protein interactions: A novel subgraph topology for functional coherence analysis on PPI networks.
    Liu Q; Chen YP; Li J
    J Theor Biol; 2014 Jan; 340():146-54. PubMed ID: 24056214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational approaches for the design of modulators targeting protein-protein interactions.
    Rehman AU; Khurshid B; Ali Y; Rasheed S; Wadood A; Ng HL; Chen HF; Wei Z; Luo R; Zhang J
    Expert Opin Drug Discov; 2023 Mar; 18(3):315-333. PubMed ID: 36715303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Methods for Predicting Protein-Protein Interactions Using Various Protein Features.
    Ding Z; Kihara D
    Curr Protoc Protein Sci; 2018 Aug; 93(1):e62. PubMed ID: 29927082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.