BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25479839)

  • 1. Genetic analysis of signal integration by the Sinorhizobium meliloti sensor kinase FeuQ.
    VanYperen RD; Orton TS; Griffitts JS
    Microbiology (Reading); 2015 Feb; 161(Pt 2):244-253. PubMed ID: 25479839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FeuN, a novel modulator of two-component signalling identified in Sinorhizobium meliloti.
    Carlyon RE; Ryther JL; VanYperen RD; Griffitts JS
    Mol Microbiol; 2010 Jul; 77(1):170-82. PubMed ID: 20487268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Sinorhizobium meliloti osmosensory two-component system required for cyclic glucan export and symbiosis.
    Griffitts JS; Carlyon RE; Erickson JH; Moulton JL; Barnett MJ; Toman CJ; Long SR
    Mol Microbiol; 2008 Jul; 69(2):479-90. PubMed ID: 18630344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ExoR is genetically coupled to the ExoS-ChvI two-component system and located in the periplasm of Sinorhizobium meliloti.
    Wells DH; Chen EJ; Fisher RF; Long SR
    Mol Microbiol; 2007 May; 64(3):647-64. PubMed ID: 17462014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The periplasmic regulator ExoR inhibits ExoS/ChvI two-component signalling in Sinorhizobium meliloti.
    Chen EJ; Sabio EA; Long SR
    Mol Microbiol; 2008 Sep; 69(5):1290-303. PubMed ID: 18631237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sinorhizobium meliloti ExoR is the target of periplasmic proteolysis.
    Lu HY; Luo L; Yang MH; Cheng HP
    J Bacteriol; 2012 Aug; 194(15):4029-40. PubMed ID: 22636773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. alpha-Galactoside uptake in Rhizobium meliloti: isolation and characterization of agpA, a gene encoding a periplasmic binding protein required for melibiose and raffinose utilization.
    Gage DJ; Long SR
    J Bacteriol; 1998 Nov; 180(21):5739-48. PubMed ID: 9791127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic mononucleotide- and Clr-dependent gene regulation in Sinorhizobium meliloti.
    Krol E; Klaner C; Gnau P; Kaever V; Essen LO; Becker A
    Microbiology (Reading); 2016 Oct; 162(10):1840-1856. PubMed ID: 27535558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sinorhizobium meliloti NtrX interacts with different regions of the visN promoter.
    Zeng S; Xing S; An F; Yang X; Yan J; Yu L; Luo L
    Acta Biochim Biophys Sin (Shanghai); 2020 Aug; 52(8):910-913. PubMed ID: 32510129
    [No Abstract]   [Full Text] [Related]  

  • 10. PhoU Allows Rapid Adaptation to High Phosphate Concentrations by Modulating PstSCAB Transport Rate in Sinorhizobium meliloti.
    diCenzo GC; Sharthiya H; Nanda A; Zamani M; Finan TM
    J Bacteriol; 2017 Sep; 199(18):. PubMed ID: 28416708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide identification of genes directly regulated by ChvI and a consensus sequence for ChvI binding in Sinorhizobium meliloti.
    Ratib NR; Sabio EY; Mendoza C; Barnett MJ; Clover SB; Ortega JA; Dela Cruz FM; Balderas D; White H; Long SR; Chen EJ
    Mol Microbiol; 2018 Nov; 110(4):596-615. PubMed ID: 30192418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of the periplasmic nitrate reductase supports anaerobic growth by Ensifer meliloti.
    Torres MJ; Avila S; Bedmar EJ; Delgado MJ
    FEMS Microbiol Lett; 2018 Apr; 365(7):. PubMed ID: 29462313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RhizoRegNet--a database of rhizobial transcription factors and regulatory networks.
    Krol E; Blom J; Winnebald J; Berhörster A; Barnett MJ; Goesmann A; Baumbach J; Becker A
    J Biotechnol; 2011 Aug; 155(1):127-34. PubMed ID: 21087643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a TRAP transporter for malonate transport and its expression regulated by GtrA from Sinorhizobium meliloti.
    Chen AM; Wang YB; Jie S; Yu AY; Luo L; Yu GQ; Zhu JB; Wang YZ
    Res Microbiol; 2010 Sep; 161(7):556-64. PubMed ID: 20594941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Most
    Lang C; Barnett MJ; Fisher RF; Smith LS; Diodati ME; Long SR
    mSphere; 2018 Oct; 3(5):. PubMed ID: 30305320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MotE serves as a new chaperone specific for the periplasmic motility protein, MotC, in Sinorhizobium meliloti.
    Eggenhofer E; Haslbeck M; Scharf B
    Mol Microbiol; 2004 May; 52(3):701-12. PubMed ID: 15101977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sinorhizobium meliloti Chemoreceptor McpV Senses Short-Chain Carboxylates via Direct Binding.
    Compton KK; Hildreth SB; Helm RF; Scharf BE
    J Bacteriol; 2018 Dec; 200(23):. PubMed ID: 30201781
    [No Abstract]   [Full Text] [Related]  

  • 18. Phosphate limitation induces catalase expression in Sinorhizobium meliloti, Pseudomonas aeruginosa and Agrobacterium tumefaciens.
    Yuan ZC; Zaheer R; Finan TM
    Mol Microbiol; 2005 Nov; 58(3):877-94. PubMed ID: 16238634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Sinorhizobium meliloti LysR family transcriptional factor LsrB is involved in regulation of glutathione biosynthesis.
    Lu D; Tang G; Wang D; Luo L
    Acta Biochim Biophys Sin (Shanghai); 2013 Oct; 45(10):882-8. PubMed ID: 23883684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conjugal transfer of the Sinorhizobium meliloti 1021 symbiotic plasmid is governed through the concerted action of one- and two-component signal transduction regulators.
    Nogales J; Blanca-Ordóñez H; Olivares J; Sanjuán J
    Environ Microbiol; 2013 Mar; 15(3):811-21. PubMed ID: 23336126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.