These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 25480044)

  • 1. A method to determine the acoustic reflection and absorption coefficients of porous media by using modal dispersion in a waveguide.
    Prisutova J; Horoshenkov K; Groby JP; Brouard B
    J Acoust Soc Am; 2014 Dec; 136(6):2947. PubMed ID: 25480044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reproducibility experiments on measuring acoustical properties of rigid-frame porous media (round-robin tests).
    Horoshenkov KV; Khan A; Bécot FX; Jaouen L; Sgard F; Renault A; Amirouche N; Pompoli F; Prodi N; Bonfiglio P; Pispola G; Asdrubali F; Hübelt J; Atalla N; Amédin CK; Lauriks W; Boeckx L
    J Acoust Soc Am; 2007 Jul; 122(1):345-53. PubMed ID: 17614494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An extended transfer matrix method for measuring acoustical properties of porous materials beyond the cut-off frequency.
    Chen L; Du L; Wang X; Sun X
    J Acoust Soc Am; 2020 Dec; 148(6):3772. PubMed ID: 33379928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modal decomposition method for acoustic impedance testing in square ducts.
    Schultz T; Cattafesta LN; Sheplak M
    J Acoust Soc Am; 2006 Dec; 120(6):3750-8. PubMed ID: 17225402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic properties of low growing plants.
    Horoshenkov KV; Khan A; Benkreira H
    J Acoust Soc Am; 2013 May; 133(5):2554-65. PubMed ID: 23654364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing rigid frame porous layer absorption with three-dimensional periodic irregularities.
    Groby JP; Brouard B; Dazel O; Nennig B; Kelders L
    J Acoust Soc Am; 2013 Feb; 133(2):821-31. PubMed ID: 23363101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Low-Frequency Sound Absorption of a Porous Layer Mosaicked with Perforated Resonator.
    Li X; Liu B; Wu Q
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parameter identification of sound absorption model of porous materials based on modified particle swarm optimization algorithm.
    Xu X; Lin P
    PLoS One; 2021; 16(5):e0250950. PubMed ID: 33945538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study on the energy and the reflection angle of the sound reflected by a porous material.
    Dragonetti R; Napolitano M; Romano RA
    J Acoust Soc Am; 2019 Jan; 145(1):489. PubMed ID: 30710957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of characteristic impedance and wave number of porous material using pulse-tube and transfer-matrix methods.
    Sun L; Hou H; Dong LY; Wan FR
    J Acoust Soc Am; 2009 Dec; 126(6):3049-56. PubMed ID: 20000918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device.
    Petosić A; Svilar D; Ivancević B
    Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The direct and inverse problems of an air-saturated porous cylinder submitted to acoustic radiation.
    Ogam E; Depollier C; Fellah ZE
    Rev Sci Instrum; 2010 Sep; 81(9):094902. PubMed ID: 20887001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse estimation of the acoustic impedance of a porous woven hose from measured transmission coefficients.
    Park CM; Ih JG; Nakayama Y; Takao H
    J Acoust Soc Am; 2003 Jan; 113(1):128-38. PubMed ID: 12558253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normalized inverse characterization of sound absorbing rigid porous media.
    Zieliński TG
    J Acoust Soc Am; 2015 Jun; 137(6):3232-43. PubMed ID: 26093413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An equivalent fluid model based finite-difference time-domain algorithm for sound propagation in porous material with rigid frame.
    Zhao J; Bao M; Wang X; Lee H; Sakamoto S
    J Acoust Soc Am; 2018 Jan; 143(1):130. PubMed ID: 29390758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sound propagation in and low frequency noise absorption by helium-filled porous material.
    Choy YS; Huang L; Wang C
    J Acoust Soc Am; 2009 Dec; 126(6):3008-19. PubMed ID: 20000914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of material properties profiles in one-dimensional macroscopically inhomogeneous rigid frame porous media in the frequency domain.
    De Ryck L; Lauriks W; Leclaire P; Groby JP; Wirgin A; Depollier C
    J Acoust Soc Am; 2008 Sep; 124(3):1591-606. PubMed ID: 19045651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfer matrix modeling and experimental validation of cellular porous material with resonant inclusions.
    Doutres O; Atalla N; Osman H
    J Acoust Soc Am; 2015 Jun; 137(6):3502-13. PubMed ID: 26093437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic wave propagation in equivalent fluid macroscopically inhomogeneous materials.
    Cieszko M; Drelich R; Pakula M
    J Acoust Soc Am; 2012 Nov; 132(5):2970-7. PubMed ID: 23145584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sound velocity and absorption in a coarsening foam.
    Mujica N; Fauve S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021404. PubMed ID: 12241175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.