BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 25480072)

  • 1. Modeling the effects of a posterior glottal opening on vocal fold dynamics with implications for vocal hyperfunction.
    Zañartu M; Galindo GE; Erath BD; Peterson SD; Wodicka GR; Hillman RE
    J Acoust Soc Am; 2014 Dec; 136(6):3262. PubMed ID: 25480072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of impact stress using an aeroelastic model of voice production.
    Horácek J; Laukkanen AM; Sidlof P
    Logoped Phoniatr Vocol; 2007; 32(4):185-92. PubMed ID: 17990190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the Pathophysiology of Phonotraumatic Vocal Hyperfunction With a Triangular Glottal Model of the Vocal Folds.
    Galindo GE; Peterson SD; Erath BD; Castro C; Hillman RE; Zañartu M
    J Speech Lang Hear Res; 2017 Sep; 60(9):2452-2471. PubMed ID: 28837719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can vocal economy in phonation be increased with an artificially lengthened vocal tract? A computer modeling study.
    Titze IR; Laukkanen AM
    Logoped Phoniatr Vocol; 2007; 32(4):147-56. PubMed ID: 17917981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis and Classification of Voice Pathologies Using Glottal Signal Parameters.
    Forero M LA; Kohler M; Vellasco MM; Cataldo E
    J Voice; 2016 Sep; 30(5):549-56. PubMed ID: 26474715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of a semioccluded vocal tract on laryngeal muscle activity and glottal adduction in a single female subject.
    Laukkanen AM; Titze IR; Hoffman H; Finnegan E
    Folia Phoniatr Logop; 2008; 60(6):298-311. PubMed ID: 19011306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Further studies of phonation threshold pressure in a physical model of the vocal fold mucosa.
    Chan RW; Titze IR; Titze MR
    J Acoust Soc Am; 1997 Jun; 101(6):3722-7. PubMed ID: 9193059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-speed video analysis of the phonation onset, with an application to the diagnosis of functional dysphonias.
    Braunschweig T; Flaschka J; Schelhorn-Neise P; Döllinger M
    Med Eng Phys; 2008 Jan; 30(1):59-66. PubMed ID: 17317268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects on the glottal voice source of vocal loudness variation in untrained female and male voices.
    Sundberg J; Fahlstedt E; Morell A
    J Acoust Soc Am; 2005 Feb; 117(2):879-85. PubMed ID: 15759707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Reinke edema--helpful in unilateral recurrent laryngeal nerve paralysis?].
    Kothe C; Schade G; Fleischer S; Hess M
    HNO; 2003 Oct; 51(10):833-5. PubMed ID: 14523539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of vocal hyperfunction on relative fundamental frequency during voicing offset and onset.
    Stepp CE; Hillman RE; Heaton JT
    J Speech Lang Hear Res; 2010 Oct; 53(5):1220-6. PubMed ID: 20643798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental investigation of the influence of a posterior gap on glottal flow and sound.
    Park JB; Mongeau L
    J Acoust Soc Am; 2008 Aug; 124(2):1171-9. PubMed ID: 18681605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of glottal closure configuration on vocal efficacy in young normal-speaking women.
    Schneider B; Bigenzahn W
    J Voice; 2003 Dec; 17(4):468-80. PubMed ID: 14740929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Air Pressure and Contact Quotient Measures During Different Semioccluded Postures in Subjects With Different Voice Conditions.
    Guzmán M; Castro C; Madrid S; Olavarria C; Leiva M; Muñoz D; Jaramillo E; Laukkanen AM
    J Voice; 2016 Nov; 30(6):759.e1-759.e10. PubMed ID: 26526005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-speed registration of phonation-related glottal area variation during artificial lengthening of the vocal tract.
    Laukkanen AM; Pulakka H; Alku P; Vilkman E; Hertegård S; Lindestad PA; Larsson H; Granqvist S
    Logoped Phoniatr Vocol; 2007; 32(4):157-64. PubMed ID: 17917980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ventricular-fold dynamics in human phonation.
    Bailly L; Bernardoni NH; Müller F; Rohlfs AK; Hess M
    J Speech Lang Hear Res; 2014 Aug; 57(4):1219-42. PubMed ID: 24687091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerodynamics of phonation.
    Schutte HK
    Acta Otorhinolaryngol Belg; 1986; 40(2):344-57. PubMed ID: 3751529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Tao C; Zhang Y; Hottinger DG; Jiang JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimental analysis of the pressures and flows within a driven mechanical model of phonation.
    Kucinschi BR; Scherer RC; Dewitt KJ; Ng TT
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):3011-21. PubMed ID: 16708957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.