BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 25480083)

  • 1. Rapid shifts of sonar attention by Pipistrellus abramus during natural hunting for multiple prey.
    Fujioka E; Aihara I; Watanabe S; Sumiya M; Hiryu S; Simmons JA; Riquimaroux H; Watanabe Y
    J Acoust Soc Am; 2014 Dec; 136(6):3389. PubMed ID: 25480083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinated Control of Acoustical Field of View and Flight in Three-Dimensional Space for Consecutive Capture by Echolocating Bats during Natural Foraging.
    Sumiya M; Fujioka E; Motoi K; Kondo M; Hiryu S
    PLoS One; 2017; 12(1):e0169995. PubMed ID: 28085936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Echolocating bats use future-target information for optimal foraging.
    Fujioka E; Aihara I; Sumiya M; Aihara K; Hiryu S
    Proc Natl Acad Sci U S A; 2016 Apr; 113(17):4848-52. PubMed ID: 27071082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Echolocation and flight strategy of Japanese house bats during natural foraging, revealed by a microphone array system.
    Fujioka E; Mantani S; Hiryu S; Riquimaroux H; Watanabe Y
    J Acoust Soc Am; 2011 Feb; 129(2):1081-8. PubMed ID: 21361464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive echolocation sounds of insectivorous bats, Pipistrellus abramus, during foraging flights in the field.
    Hiryu S; Hagino T; Fujioka E; Riquimaroux H; Watanabe Y
    J Acoust Soc Am; 2008 Aug; 124(2):EL51-6. PubMed ID: 18681502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional sonar beam-width expansion by Japanese house bats (Pipistrellus abramus) during natural foraging.
    Motoi K; Sumiya M; Fujioka E; Hiryu S
    J Acoust Soc Am; 2017 May; 141(5):EL439. PubMed ID: 28599524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FM echolocating bats shift frequencies to avoid broadcast-echo ambiguity in clutter.
    Hiryu S; Bates ME; Simmons JA; Riquimaroux H
    Proc Natl Acad Sci U S A; 2010 Apr; 107(15):7048-53. PubMed ID: 20351291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Big brown bats (Eptesicus fuscus) emit intense search calls and fly in stereotyped flight paths as they forage in the wild.
    Hulgard K; Moss CF; Jakobsen L; Surlykke A
    J Exp Biol; 2016 Feb; 219(Pt 3):334-40. PubMed ID: 26596537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of competitive prey capture on flight behavior and sonar beam pattern in paired big brown bats, Eptesicus fuscus.
    Chiu C; Reddy PV; Xian W; Krishnaprasad PS; Moss CF
    J Exp Biol; 2010 Oct; 213(Pt 19):3348-56. PubMed ID: 20833928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Representation of perceptual dimensions of insect prey during terminal pursuit by echolocating bats.
    Simmons JA; Dear SP; Ferragamo MJ; Haresign T; Fritz J
    Biol Bull; 1996 Aug; 191(1):109-21. PubMed ID: 8776847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The echolocation and hunting behavior of the bat, Pipistrellus kuhli.
    Schnitzler HU; Kalko E; Miller L; Surlykke A
    J Comp Physiol A; 1987 Aug; 161(2):267-74. PubMed ID: 3625576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Species-specific control of acoustic gaze by echolocating bats, Rhinolophus ferrumequinum nippon and Pipistrellus abramus, during flight.
    Yamada Y; Hiryu S; Watanabe Y
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Nov; 202(11):791-801. PubMed ID: 27566319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Echolocating bats emit terminal phase buzz calls while drinking on the wing.
    Griffiths SR
    Behav Processes; 2013 Sep; 98():58-60. PubMed ID: 23701945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scanning behavior in echolocating common pipistrelle bats (Pipistrellus pipistrellus).
    Seibert AM; Koblitz JC; Denzinger A; Schnitzler HU
    PLoS One; 2013; 8(4):e60752. PubMed ID: 23580164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial memory and stereotypy of flight paths by big brown bats in cluttered surroundings.
    Barchi JR; Knowles JM; Simmons JA
    J Exp Biol; 2013 Mar; 216(Pt 6):1053-63. PubMed ID: 23447667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling bat prey capture in echolocating bats: The feasibility of reactive pursuit.
    Vanderelst D; Peremans H
    J Theor Biol; 2018 Nov; 456():305-314. PubMed ID: 30102889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive Echolocation and Flight Behaviors in Bats Can Inspire Technology Innovations for Sonar Tracking and Interception.
    Diebold CA; Salles A; Moss CF
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32456142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prey-capture success revealed by echolocation signals in pipistrelle bats (Pipistrellus pygmaeus).
    Surlykke A; Futtrup V; Tougaard J
    J Exp Biol; 2003 Jan; 206(Pt 1):93-104. PubMed ID: 12456700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine-tuned echolocation and capture-flight of Myotis capaccinii when facing different-sized insect and fish prey.
    Aizpurua O; Aihartza J; Alberdi A; Baagøe HJ; Garin I
    J Exp Biol; 2014 Sep; 217(Pt 18):3318-25. PubMed ID: 25013107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Echolocation and passive listening by foraging mouse-eared bats Myotis myotis and M. blythii.
    Russo D; Jones G; Arlettaz R
    J Exp Biol; 2007 Jan; 210(Pt 1):166-76. PubMed ID: 17170159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.