BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 25480132)

  • 1. Large scale modelling of salmon lice (Lepeophtheirus salmonis) infection pressure based on lice monitoring data from Norwegian salmonid farms.
    Kristoffersen AB; Jimenez D; Viljugrein H; Grøntvedt R; Stien A; Jansen PA
    Epidemics; 2014 Dec; 9():31-9. PubMed ID: 25480132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wild salmonids and sea louse infestations on the west coast of Scotland: sources of infection and implications for the management of marine salmon farms.
    Butler JR
    Pest Manag Sci; 2002 Jun; 58(6):595-608; discussion 622-9. PubMed ID: 12138626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model of salmon louse production in Norway: effects of increasing salmon production and public management measures.
    Heuch PA; Mo TA
    Dis Aquat Organ; 2001 Jun; 45(2):145-52. PubMed ID: 11463102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A partly stage-structured model for the abundance of salmon lice in salmonid farms.
    Aldrin M; Jansen PA; Stryhn H
    Epidemics; 2019 Mar; 26():9-22. PubMed ID: 30172577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Space-time modelling of the spread of salmon lice between and within Norwegian marine salmon farms.
    Aldrin M; Storvik B; Kristoffersen AB; Jansen PA
    PLoS One; 2013; 8(5):e64039. PubMed ID: 23700455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the effectiveness of depth-based technologies to prevent salmon lice infection using a dispersal model.
    Samsing F; Johnsen I; Stien LH; Oppedal F; Albretsen J; Asplin L; Dempster T
    Prev Vet Med; 2016 Jul; 129():48-57. PubMed ID: 27317322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding sources of sea lice for salmon farms in Chile.
    Kristoffersen AB; Rees EE; Stryhn H; Ibarra R; Campisto JL; Revie CW; St-Hilaire S
    Prev Vet Med; 2013 Aug; 111(1-2):165-75. PubMed ID: 23628338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An assessment of salmon farms and wild salmonids as sources of Lepeophtheirus salmonis (Krøyer) copepodids in the water column in Loch Torridon, Scotland.
    Penston MJ; Davies IM
    J Fish Dis; 2009 Jan; 32(1):75-88. PubMed ID: 19245632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How sea lice from salmon farms may cause wild salmonid declines in Europe and North America and be a threat to fishes elsewhere.
    Costello MJ
    Proc Biol Sci; 2009 Oct; 276(1672):3385-94. PubMed ID: 19586950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sea louse infection of juvenile sockeye salmon in relation to marine salmon farms on Canada's west coast.
    Price MH; Proboszcz SL; Routledge RD; Gottesfeld AS; Orr C; Reynolds JD
    PLoS One; 2011 Feb; 6(2):e16851. PubMed ID: 21347456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sea-cage aquaculture, sea lice, and declines of wild fish.
    Frazer LN
    Conserv Biol; 2009 Jun; 23(3):599-607. PubMed ID: 19128323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salmon lice--impact on wild salmonids and salmon aquaculture.
    Torrissen O; Jones S; Asche F; Guttormsen A; Skilbrei OT; Nilsen F; Horsberg TE; Jackson D
    J Fish Dis; 2013 Mar; 36(3):171-94. PubMed ID: 23311858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmission dynamics of parasitic sea lice from farm to wild salmon.
    Krkosek M; Lewis MA; Volpe JP
    Proc Biol Sci; 2005 Apr; 272(1564):689-96. PubMed ID: 15870031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 'Snorkel' lice barrier technology reduced two co- occurring parasites, the salmon louse (Lepeophtheirus salmonis) and the amoebic gill disease causing agent (Neoparamoeba perurans), in commercial salmon sea-cages.
    Wright DW; Stien LH; Dempster T; Vågseth T; Nola V; Fosseidengen JE; Oppedal F
    Prev Vet Med; 2017 May; 140():97-105. PubMed ID: 28460755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 200K SNP chip reveals a novel Pacific salmon louse genotype linked to differential efficacy of emamectin benzoate.
    Messmer AM; Leong JS; Rondeau EB; Mueller A; Despins CA; Minkley DR; Kent MP; Lien S; Boyce B; Morrison D; Fast MD; Norman JD; Danzmann RG; Koop BF
    Mar Genomics; 2018 Jul; 40():45-57. PubMed ID: 29673959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sea lice as a density-dependent constraint to salmonid farming.
    Jansen PA; Kristoffersen AB; Viljugrein H; Jimenez D; Aldrin M; Stien A
    Proc Biol Sci; 2012 Jun; 279(1737):2330-8. PubMed ID: 22319130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of potential pathogens of sea lice and the application of cleaner fish in biological control.
    Treasurer JW
    Pest Manag Sci; 2002 Jun; 58(6):546-58. PubMed ID: 12138621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Horizontal and vertical distribution of sea lice larvae (Lepeophtheirus salmonis) in and around salmon farms in the Bay of Fundy, Canada.
    Nelson EJ; Robinson SMC; Feindel N; Sterling A; Byrne A; Pee Ang K
    J Fish Dis; 2018 Jun; 41(6):885-899. PubMed ID: 29159846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative risk assessment of salmon louse-induced mortality of seaward-migrating post-smolt Atlantic salmon.
    Kristoffersen AB; Qviller L; Helgesen KO; Vollset KW; Viljugrein H; Jansen PA
    Epidemics; 2018 Jun; 23():19-33. PubMed ID: 29233546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship of farm salmon, sea lice, and wild salmon populations.
    Marty GD; Saksida SM; Quinn TJ
    Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22599-604. PubMed ID: 21149706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.