BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 25480444)

  • 1. Edge effects in calling variants from targeted amplicon sequencing.
    Satya RV; DiCarlo J
    BMC Genomics; 2014 Dec; 15(1):1073. PubMed ID: 25480444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UNDR ROVER - a fast and accurate variant caller for targeted DNA sequencing.
    Park DJ; Li R; Lau E; Georgeson P; Nguyen-Dumont T; Pope BJ
    BMC Bioinformatics; 2016 Apr; 17():165. PubMed ID: 27083325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Read trimming has minimal effect on bacterial SNP-calling accuracy.
    Bush SJ
    Microb Genom; 2020 Dec; 6(12):. PubMed ID: 33332257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minor variant detection in amplicons using 454 massive parallel pyrosequencing: experiences and considerations for successful applications.
    Vandenbroucke I; Van Marck H; Verhasselt P; Thys K; Mostmans W; Dumont S; Van Eygen V; Coen K; Tuefferd M; Aerssens J
    Biotechniques; 2011 Sep; 51(3):167-77. PubMed ID: 21906038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variant Calling From Next Generation Sequence Data.
    Hansen NF
    Methods Mol Biol; 2016; 1418():209-24. PubMed ID: 27008017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges in exome analysis by LifeScope and its alternative computational pipelines.
    Pranckevičiene E; Rančelis T; Pranculis A; Kučinskas V
    BMC Res Notes; 2015 Sep; 8():421. PubMed ID: 26346699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. tarSVM: Improving the accuracy of variant calls derived from microfluidic PCR-based targeted next generation sequencing using a support vector machine.
    Gillies CE; Otto EA; Vega-Warner V; Robertson CC; Sanna-Cherchi S; Gharavi A; Crawford B; Bhimma R; Winkler C; ; ; Kang HM; Sampson MG
    BMC Bioinformatics; 2016 Jun; 17(1):233. PubMed ID: 27287006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. cutPrimers: A New Tool for Accurate Cutting of Primers from Reads of Targeted Next Generation Sequencing.
    Kechin A; Boyarskikh U; Kel A; Filipenko M
    J Comput Biol; 2017 Nov; 24(11):1138-1143. PubMed ID: 28715235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amplicon sequencing of colorectal cancer: variant calling in frozen and formalin-fixed samples.
    Betge J; Kerr G; Miersch T; Leible S; Erdmann G; Galata CL; Zhan T; Gaiser T; Post S; Ebert MP; Horisberger K; Boutros M
    PLoS One; 2015; 10(5):e0127146. PubMed ID: 26010451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BAMClipper: removing primers from alignments to minimize false-negative mutations in amplicon next-generation sequencing.
    Au CH; Ho DN; Kwong A; Chan TL; Ma ESK
    Sci Rep; 2017 May; 7(1):1567. PubMed ID: 28484262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinformatic Challenges in Clinical Diagnostic Application of Targeted Next Generation Sequencing: Experience from Pheochromocytoma.
    Crona J; Ljungström V; Welin S; Walz MK; Hellman P; Björklund P
    PLoS One; 2015; 10(7):e0133210. PubMed ID: 26230854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing amplification artifacts in high multiplex amplicon sequencing by using molecular barcodes.
    Peng Q; Vijaya Satya R; Lewis M; Randad P; Wang Y
    BMC Genomics; 2015 Aug; 16(1):589. PubMed ID: 26248467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Workflow to Improve Variant Calling Accuracy in Molecular Barcoded Sequencing Reads.
    Ta M; Yin C; Smith GL; Xu W
    J Comput Biol; 2019 Jan; 26(1):96-103. PubMed ID: 30117742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High throughput HLA genotyping using 454 sequencing and the Fluidigm Access Array™ System for simplified amplicon library preparation.
    Moonsamy PV; Williams T; Bonella P; Holcomb CL; Höglund BN; Hillman G; Goodridge D; Turenchalk GS; Blake LA; Daigle DA; Simen BB; Hamilton A; May AP; Erlich HA
    Tissue Antigens; 2013 Mar; 81(3):141-9. PubMed ID: 23398507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel computational methods for increasing PCR primer design effectiveness in directed sequencing.
    Li K; Brownley A; Stockwell TB; Beeson K; McIntosh TC; Busam D; Ferriera S; Murphy S; Levy S
    BMC Bioinformatics; 2008 Apr; 9():191. PubMed ID: 18405373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AmpliVar: mutation detection in high-throughput sequence from amplicon-based libraries.
    Hsu AL; Kondrashova O; Lunke S; Love CJ; Meldrum C; Marquis-Nicholson R; Corboy G; Pham K; Wakefield M; Waring PM; Taylor GR
    Hum Mutat; 2015 Apr; 36(4):411-8. PubMed ID: 25664426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nimbus: a design-driven analyses suite for amplicon-based NGS data.
    Brouwer RWW; van den Hout MCGN; Kockx CEM; Brosens E; Eussen B; de Klein A; Sleutels F; van IJcken WFJ
    Bioinformatics; 2018 Aug; 34(16):2732-2739. PubMed ID: 29538618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchmarking datasets for assembly-based variant calling using high-fidelity long reads.
    Lee H; Kim J; Lee J
    BMC Genomics; 2023 Mar; 24(1):148. PubMed ID: 36973656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Method for improving sequence coverage uniformity of targeted genomic intervals amplified by LR-PCR using Illumina GA sequencing-by-synthesis technology.
    Harismendy O; Frazer K
    Biotechniques; 2009 Mar; 46(3):229-31. PubMed ID: 19317667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ThermoAlign: a genome-aware primer design tool for tiled amplicon resequencing.
    Francis F; Dumas MD; Wisser RJ
    Sci Rep; 2017 Mar; 7():44437. PubMed ID: 28300202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.