These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 2548059)

  • 1. Mistranslation induces the heat-shock response in the yeast Saccharomyces cerevisiae.
    Grant CM; Firoozan M; Tuite MF
    Mol Microbiol; 1989 Feb; 3(2):215-20. PubMed ID: 2548059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mistranslation of human phosphoglycerate kinase in yeast in the presence of paromomycin.
    Grant CM; Tuite MF
    Curr Genet; 1994 Aug; 26(2):95-9. PubMed ID: 8001177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo protein synthesis is essential for thermotolerance acquisition in a Saccharomyces cerevisiae trehalose synthase mutant.
    Gross C; Watson K
    Biochem Mol Biol Int; 1998 Jul; 45(4):663-71. PubMed ID: 9713688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial and cytoplasmic protein syntheses are not required for heat shock acquisition of ethanol and thermotolerance in yeast.
    Watson K; Dunlop G; Cavicchioli R
    FEBS Lett; 1984 Jul; 172(2):299-302. PubMed ID: 6378658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat shock protein synthesis and trehalose accumulation are not required for induced thermotolerance in depressed Saccharomyces cerevisiae.
    Gross C; Watson K
    Biochem Biophys Res Commun; 1996 Mar; 220(3):766-72. PubMed ID: 8607839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of heat shock protein is independent of cell cycle blockage in the yeast Saccharomyces cerevisiae.
    Barnes CA; Singer RA; Johnston GC
    J Bacteriol; 1987 Dec; 169(12):5622-5. PubMed ID: 3316189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual regulation of the expression of the polyubiquitin gene by cyclic AMP and heat shock in yeast.
    Tanaka K; Matsumoto K; Toh-e A
    EMBO J; 1988 Feb; 7(2):495-502. PubMed ID: 2835229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast thermotolerance does not require protein synthesis.
    Hall BG
    J Bacteriol; 1983 Dec; 156(3):1363-5. PubMed ID: 6358199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae.
    Lewis JG; Learmonth RP; Watson K
    Microbiology (Reading); 1995 Mar; 141 ( Pt 3)():687-94. PubMed ID: 7711907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The paromomycin resistance mutation (parr-454) in the 15 S rRNA gene of the yeast Saccharomyces cerevisiae is involved in ribosomal frameshifting.
    Weiss-Brummer B; Hüttenhofer A
    Mol Gen Genet; 1989 Jun; 217(2-3):362-9. PubMed ID: 2671660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acquisition of thermotolerance in Saccharomyces cerevisiae without heat shock protein hsp 104 and in the absence of protein synthesis.
    De Virgilio C; Piper P; Boller T; Wiemken A
    FEBS Lett; 1991 Aug; 288(1-2):86-90. PubMed ID: 1831771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 70-kilodalton heat-shock proteins of the SSA subfamily negatively modulate heat-shock-induced accumulation of trehalose and promote recovery from heat stress in the yeast, Saccharomyces cerevisiae.
    Hottiger T; De Virgilio C; Bell W; Boller T; Wiemken A
    Eur J Biochem; 1992 Nov; 210(1):125-32. PubMed ID: 1446665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A subset of histamine receptor ligands improve thermotolerance of the yeast Saccharomyces cerevisiae.
    Papamichael K; Delitheos B; Tiligada E
    J Appl Microbiol; 2013 Feb; 114(2):492-501. PubMed ID: 23121472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The yeast heat shock response is induced by conversion of cells to spheroplasts and by potent transcriptional inhibitors.
    Adams CC; Gross DS
    J Bacteriol; 1991 Dec; 173(23):7429-35. PubMed ID: 1938939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consequences of the overexpression of ubiquitin in yeast: elevated tolerances of osmostress, ethanol and canavanine, yet reduced tolerances of cadmium, arsenite and paromomycin.
    Chen Y; Piper PW
    Biochim Biophys Acta; 1995 Jul; 1268(1):59-64. PubMed ID: 7626663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two nucleotide substitutions in the A-site of yeast 18S rRNA affect translation and differentiate the interaction of ribosomes with aminoglycoside antibiotics.
    Tselika S; Konstantinidis TC; Synetos D
    Biochimie; 2008 Jun; 90(6):908-17. PubMed ID: 18331849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The stress response against denatured proteins in the deletion of cytosolic chaperones SSA1/2 is different from heat-shock response in Saccharomyces cerevisiae.
    Matsumoto R; Akama K; Rakwal R; Iwahashi H
    BMC Genomics; 2005 Oct; 6():141. PubMed ID: 16209719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat shock proteins affect RNA processing during the heat shock response of Saccharomyces cerevisiae.
    Yost HJ; Lindquist S
    Mol Cell Biol; 1991 Feb; 11(2):1062-8. PubMed ID: 1899282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of heat shock transcription factor in yeast is not influenced by the levels of expression of heat shock proteins.
    Hjorth-Sørensen B; Hoffmann ER; Lissin NM; Sewell AK; Jakobsen BK
    Mol Microbiol; 2001 Feb; 39(4):914-23. PubMed ID: 11251812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional and translational regulation of major heat shock proteins and patterns of trehalose mobilization during hyperthermic recovery in repressed and derepressed Saccharomyces cerevisiae.
    Gross C; Watson K
    Can J Microbiol; 1998 Apr; 44(4):341-50. PubMed ID: 9674106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.