These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Ventilation-Induced Modulation of Pulse Oximeter Waveforms: A Method for the Assessment of Early Changes in Intravascular Volume During Spinal Fusion Surgery in Pediatric Patients. Alian AA; Atteya G; Gaal D; Golembeski T; Smith BG; Dai F; Silverman DG; Shelley K Anesth Analg; 2016 Aug; 123(2):346-56. PubMed ID: 27284998 [TBL] [Abstract][Full Text] [Related]
3. Noninvasive monitoring by photoplethysmography. Sahni R Clin Perinatol; 2012 Sep; 39(3):573-83. PubMed ID: 22954270 [TBL] [Abstract][Full Text] [Related]
4. Impact of central hypovolemia on photoplethysmographic waveform parameters in healthy volunteers part 2: frequency domain analysis. Alian AA; Galante NJ; Stachenfeld NS; Silverman DG; Shelley KH J Clin Monit Comput; 2011 Dec; 25(6):387-96. PubMed ID: 22057245 [TBL] [Abstract][Full Text] [Related]
5. Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate. Shelley KH Anesth Analg; 2007 Dec; 105(6 Suppl):S31-S36. PubMed ID: 18048895 [TBL] [Abstract][Full Text] [Related]
7. Variability in time delay between two models of pulse oximeters for deriving the photoplethysmographic signals. Foo JY; Wilson SJ; Dakin C; Williams G; Harris MA; Cooper D Physiol Meas; 2005 Aug; 26(4):531-44. PubMed ID: 15886446 [TBL] [Abstract][Full Text] [Related]
8. Signal quality measures for pulse oximetry through waveform morphology analysis. Sukor JA; Redmond SJ; Lovell NH Physiol Meas; 2011 Mar; 32(3):369-84. PubMed ID: 21330696 [TBL] [Abstract][Full Text] [Related]
9. Using time-frequency analysis of the photoplethysmographic waveform to detect the withdrawal of 900 mL of blood. Scully CG; Selvaraj N; Romberg FW; Wardhan R; Ryan J; Florian JP; Silverman DG; Shelley KH; Chon KH Anesth Analg; 2012 Jul; 115(1):74-81. PubMed ID: 22543068 [TBL] [Abstract][Full Text] [Related]
10. An in vivo investigation of photoplethysmographic signals and preliminary pulse oximetry estimation from the bowel using a new fiberoptic sensor. Hickey M; Samuels N; Randive N; Langford RM; Kyriacou PA Anesth Analg; 2011 May; 112(5):1104-9. PubMed ID: 21346164 [TBL] [Abstract][Full Text] [Related]
11. Using the ear photoplethysmographic waveform as an early indicator of central hypovolemia in healthy volunteers utilizing LBNP induced hypovolemia model. Eid AM; Elgamal M; Gonzalez-Fiol A; Shelley KH; Wu HT; Alian AA Physiol Meas; 2023 Jul; 44(5):. PubMed ID: 37116503 [No Abstract] [Full Text] [Related]
12. Impact of central hypovolemia on photoplethysmographic waveform parameters in healthy volunteers. Part 1: time domain analysis. Alian AA; Galante NJ; Stachenfeld NS; Silverman DG; Shelley KH J Clin Monit Comput; 2011 Dec; 25(6):377-85. PubMed ID: 22051898 [TBL] [Abstract][Full Text] [Related]
13. Physiologic validation of the Compensatory Reserve Metric obtained from pulse oximetry: A step toward advanced medical monitoring on the battlefield. Roden RT; Webb KL; Pruter WW; Gorman EK; Holmes DR; Haider CR; Joyner MJ; Curry TB; Wiggins CC; Convertino VA J Trauma Acute Care Surg; 2024 Aug; 97(2S Suppl 1):S98-S104. PubMed ID: 38745348 [TBL] [Abstract][Full Text] [Related]
14. Photoplethysmography and its application in clinical physiological measurement. Allen J Physiol Meas; 2007 Mar; 28(3):R1-39. PubMed ID: 17322588 [TBL] [Abstract][Full Text] [Related]
15. Respiratory physiology and the impact of different modes of ventilation on the photoplethysmographic waveform. Alian AA; Shelley KH Sensors (Basel); 2012; 12(2):2236-54. PubMed ID: 22438762 [TBL] [Abstract][Full Text] [Related]
16. [Accuracy analysis of pulse oximetry based on dynamic spectroscopy]. Li G; Li SY; Lin L; Wang Y; Li XX; Lu ZY Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Oct; 26(10):1821-4. PubMed ID: 17205729 [TBL] [Abstract][Full Text] [Related]
17. Pulse oximetry and photoplethysmographic waveform analysis of the esophagus and bowel. Phillips JP; Kyriacou PA; Jones DP; Shelley KH; Langford RM Curr Opin Anaesthesiol; 2008 Dec; 21(6):779-83. PubMed ID: 18997529 [TBL] [Abstract][Full Text] [Related]
18. Respiratory variations in the photoplethysmographic waveform: acute hypovolaemia during spontaneous breathing is not detected. Nilsson L; Goscinski T; Lindenberger M; Länne T; Johansson A Physiol Meas; 2010 Jul; 31(7):953-62. PubMed ID: 20530847 [TBL] [Abstract][Full Text] [Related]
19. Respiratory variations in the photoplethysmographic waveform amplitude depend on type of pulse oximetry device. Høiseth LØ; Hoff IE; Hagen OA; Kirkebøen KA; Landsverk SA J Clin Monit Comput; 2016 Jun; 30(3):317-25. PubMed ID: 26067403 [TBL] [Abstract][Full Text] [Related]
20. Estimation of instantaneous venous blood saturation using the photoplethysmograph waveform. Shafqat K; Langford RM; Kyriacou PA Physiol Meas; 2015 Oct; 36(10):2203-14. PubMed ID: 26365652 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]